Search results
Results from the WOW.Com Content Network
A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts. [2] [3] Hyperparameter optimization determines the set of hyperparameters that yields an optimal model which minimizes a predefined loss function on a given data set. [4]
[3] The input consists of the k closest training examples in a data set. The neighbors are taken from a set of objects for which the class (for k-NN classification) or the object property value (for k-NN regression) is known. This can be thought of as the training set for the algorithm, though no explicit training step is required.
In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).
Typically, this is repeated for many different hyperparameters (or even different model types) and the validation set is used to determine the best hyperparameter set (and model type) for this inner training set. After this, a new model is fit on the entire outer training set, using the best set of hyperparameters from the inner cross-validation.
As with the term hyperparameter, the use of hyper is to distinguish it from a prior distribution of a parameter of the model for the underlying system. They arise particularly in the use of hierarchical models. [1] [2] For example, if one is using a beta distribution to model the distribution of the parameter p of a Bernoulli distribution, then:
The Hierarchical navigable small world (HNSW) algorithm is a graph-based approximate nearest neighbor search technique used in many vector databases. [1] [2] Nearest neighbor search without an index involves computing the distance from the query to each point in the database, which for large datasets is computationally prohibitive.
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
If all the vertices in the domain are visited, then terminate. Else, go to step 3. The sequence of the visited vertices is the output of the algorithm. The nearest neighbour algorithm is easy to implement and executes quickly, but it can sometimes miss shorter routes which are easily noticed with human insight, due to its "greedy" nature.