Search results
Results from the WOW.Com Content Network
A fuzzy Mediawiki search for "angry emoticon" has as a suggested result "andré emotions" In computer science, approximate string matching (often colloquially referred to as fuzzy string searching) is the technique of finding strings that match a pattern approximately (rather than exactly).
The bitap algorithm (also known as the shift-or, shift-and or Baeza-Yates-Gonnet algorithm) is an approximate string matching algorithm. The algorithm tells whether a given text contains a substring which is "approximately equal" to a given pattern, where approximate equality is defined in terms of Levenshtein distance – if the substring and pattern are within a given distance k of each ...
In computer science, a rough set, first described by Polish computer scientist Zdzisław I. Pawlak, is a formal approximation of a crisp set (i.e., conventional set) in terms of a pair of sets which give the lower and the upper approximation of the original set.
Fuzzy retrieval techniques are based on the Extended Boolean model and the Fuzzy set theory. There are two classical fuzzy retrieval models: Mixed Min and Max (MMM) and the Paice model. Both models do not provide a way of evaluating query weights, however this is considered by the P-norms algorithm.
Here is an example: Suppose, the network gets as input the distance between two points in the 2d space. The distance is measured in pixels and it can have values from 0 up to 500 pixels. Converting the numerical values into fuzzy numbers is done with the membership function which consists of semantic descriptions like near, middle and far. [10]
Obsidian is a personal knowledge base and note-taking application that operates on Markdown files. [3] [4] [5] It allows users to make internal links for notes and then to visualize the connections as a graph. [6] [7] It is designed to help users organize and structure their thoughts and knowledge in a flexible, non-linear way. [8]
Type-2 fuzzy sets and systems generalize standard Type-1 fuzzy sets and systems so that more uncertainty can be handled. From the beginning of fuzzy sets, criticism was made about the fact that the membership function of a type-1 fuzzy set has no uncertainty associated with it, something that seems to contradict the word fuzzy, since that word has the connotation of much uncertainty.
In this way, fuzzy matching can speed up the translation process and lead to increased productivity. This raises questions about the quality of the resulting translations. On occasions a translator is under pressure to deliver on time and is thus led to accept a fuzzy match proposal without checking its suitability and context.