enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tennis racket theorem - Wikipedia

    en.wikipedia.org/wiki/Tennis_racket_theorem

    The tennis racket theorem or intermediate axis theorem, is a kinetic phenomenon of classical mechanics which describes the movement of a rigid body with three distinct principal moments of inertia. It has also been dubbed the Dzhanibekov effect , after Soviet cosmonaut Vladimir Dzhanibekov , who noticed one of the theorem's logical consequences ...

  3. Vladimir Dzhanibekov - Wikipedia

    en.wikipedia.org/wiki/Vladimir_Dzhanibekov

    In 1985 he demonstrated stable and unstable rotation of a T-handle nut from the orbit, subsequently named the Dzhanibekov effect. The effect had been long known from the tennis racket theorem, which says that rotation about an object's intermediate principal axis is unstable while in free fall. In 1985 he was promoted to the rank of major ...

  4. File:Dzhanibekov effect.ogv - Wikipedia

    en.wikipedia.org/wiki/File:Dzhanibekov_effect.ogv

    The following other wikis use this file: Usage on ar.wikipedia.org مبرهنة مضرب التنس; Usage on de.wikipedia.org Dschanibekow-Effekt

  5. Poinsot's ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Poinsot's_ellipsoid

    As described in the tennis racket theorem, rotation of an object around its first or third principal axis is stable, while rotation around its second principal axis (or intermediate axis) is not. The motion is simplified in the case of an axisymmetric body, in which the moment of inertia is the same about two of the principal axes.

  6. Computer-assisted proof - Wikipedia

    en.wikipedia.org/wiki/Computer-assisted_proof

    Computer-assisted proofs are the subject of some controversy in the mathematical world, with Thomas Tymoczko first to articulate objections. Those who adhere to Tymoczko's arguments believe that lengthy computer-assisted proofs are not, in some sense, 'real' mathematical proofs because they involve so many logical steps that they are not practically verifiable by human beings, and that ...

  7. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    The formula defines the energy E of a particle in its rest frame as the product of mass (m) with the speed of light squared (c 2). Because the speed of light is a large number in everyday units (approximately 300 000 km/s or 186 000 mi/s), the formula implies that a small amount of mass corresponds to an enormous amount of energy.

  8. Henstock–Kurzweil integral - Wikipedia

    en.wikipedia.org/wiki/Henstock–Kurzweil_integral

    In mathematics, the Henstock–Kurzweil integral or generalized Riemann integral or gauge integral – also known as the (narrow) Denjoy integral (pronounced), Luzin integral or Perron integral, but not to be confused with the more general wide Denjoy integral – is one of a number of inequivalent definitions of the integral of a function.

  9. Hartman–Grobman theorem - Wikipedia

    en.wikipedia.org/wiki/Hartman–Grobman_theorem

    The theorem owes its name to Philip Hartman and David M. Grobman. The theorem states that the behaviour of a dynamical system in a domain near a hyperbolic equilibrium point is qualitatively the same as the behaviour of its linearization near this equilibrium point, where hyperbolicity means that no eigenvalue of the linearization has real part ...