enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Solvated electron - Wikipedia

    en.wikipedia.org/wiki/Solvated_electron

    Solvated electrons are involved in the reaction of alkali metals with water, even though the solvated electron has only a fleeting existence. [10] Below pH = 9.6 the hydrated electron reacts with the hydronium ion giving atomic hydrogen, which in turn can react with the hydrated electron giving hydroxide ion and usual molecular hydrogen H 2. [11]

  3. Nitric acid - Wikipedia

    en.wikipedia.org/wiki/Nitric_acid

    Nitric acid reacts with most metals, but the details depend on the concentration of the acid and the nature of the metal. Dilute nitric acid behaves as a typical acid in its reaction with most metals. Magnesium, manganese, and zinc liberate H 2: Mg + 2 HNO 3 → Mg(NO 3) 2 + H 2 Mn + 2 HNO 3 → Mn(NO 3) 2 + H 2 Zn + 2 HNO 3 → Zn(NO 3) 2 + H 2

  4. Standard Gibbs free energy of formation - Wikipedia

    en.wikipedia.org/wiki/Standard_Gibbs_free_energy...

    The standard Gibbs free energy of formation (G f °) of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 bar of pressure and the specified temperature, usually 298.15 K or 25 °C).

  5. Standard enthalpy of formation - Wikipedia

    en.wikipedia.org/wiki/Standard_enthalpy_of_formation

    For many substances, the formation reaction may be considered as the sum of a number of simpler reactions, either real or fictitious. The enthalpy of reaction can then be analyzed by applying Hess' law, which states that the sum of the enthalpy changes for a number of individual reaction steps equals the enthalpy change of the overall reaction.

  6. Equilibrium chemistry - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_chemistry

    The equilibrium constant for a full redox reaction can be obtained from the standard redox potentials of the constituent half-reactions. At equilibrium the potential for the two half-reactions must be equal to each other and, of course, the number of electrons exchanged must be the same in the two half reactions. [32]

  7. Acid dissociation constant - Wikipedia

    en.wikipedia.org/wiki/Acid_dissociation_constant

    Note that the standard free energy change for the reaction is for the changes from the reactants in their standard states to the products in their standard states. The free energy change at equilibrium is zero since the chemical potentials of reactants and products are equal at equilibrium.

  8. Lewis acids and bases - Wikipedia

    en.wikipedia.org/wiki/Lewis_acids_and_bases

    The equation is −ΔH = E A E B + C A C B + W. The W term represents a constant energy contribution for acid–base reaction such as the cleavage of a dimeric acid or base. The equation predicts reversal of acids and base strengths. The graphical presentations of the equation show that there is no single order of Lewis base strengths or Lewis ...

  9. Birkeland–Eyde process - Wikipedia

    en.wikipedia.org/wiki/Birkeland–Eyde_process

    It is a multi-step nitrogen fixation reaction that uses electrical arcs to react atmospheric nitrogen (N 2) with oxygen (O 2), ultimately producing nitric acid (HNO 3) with water. [1] The resultant nitric acid was then used as a source of nitrate (NO 3 − ) in the reaction HNO 3 + H 2 O H 3 O + + NO 3 − {\textstyle {\ce {HNO3 + H2O -> H3O ...