enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Probability mass function - Wikipedia

    en.wikipedia.org/wiki/Probability_mass_function

    The graph of a probability mass function. All the values of this function must be non-negative and sum up to 1. In probability and statistics, a probability mass function (sometimes called probability function or frequency function [1]) is a function that gives the probability that a discrete random variable is exactly equal to some value. [2]

  3. Saddlepoint approximation method - Wikipedia

    en.wikipedia.org/wiki/Saddlepoint_approximation...

    The saddlepoint approximation method, initially proposed by Daniels (1954) [1] is a specific example of the mathematical saddlepoint technique applied to statistics, in particular to the distribution of the sum of independent random variables.

  4. Kernel (statistics) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(statistics)

    In statistics, especially in Bayesian statistics, the kernel of a probability density function (pdf) or probability mass function (pmf) is the form of the pdf or pmf in which any factors that are not functions of any of the variables in the domain are omitted. [1] Note that such factors may well be functions of the parameters of the

  5. Skellam distribution - Wikipedia

    en.wikipedia.org/wiki/Skellam_distribution

    The probability mass function of a Poisson-distributed random variable with mean μ is given by (;) =!.for (and zero otherwise). The Skellam probability mass function for the difference of two independent counts = is the convolution of two Poisson distributions: (Skellam, 1946)

  6. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  7. Wallenius' noncentral hypergeometric distribution - Wikipedia

    en.wikipedia.org/wiki/Wallenius'_noncentral...

    Probability mass function for Wallenius' Noncentral Hypergeometric Distribution for different values of the odds ratio ω. m 1 = 80, m 2 = 60, n = 100, ω = 0.1 ... 20. In probability theory and statistics, Wallenius' noncentral hypergeometric distribution (named after Kenneth Ted Wallenius) is a generalization of the hypergeometric distribution where items are sampled with bias.

  8. Yule–Simon distribution - Wikipedia

    en.wikipedia.org/wiki/Yule–Simon_distribution

    In probability and statistics, the Yule–Simon distribution is a discrete probability distribution named after Udny Yule and Herbert A. Simon. Simon originally called it the Yule distribution. [1] The probability mass function (pmf) of the Yule–Simon (ρ) distribution is

  9. Logarithmic distribution - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_distribution

    where B is the incomplete beta function. A Poisson compounded with Log( p )-distributed random variables has a negative binomial distribution . In other words, if N is a random variable with a Poisson distribution , and X i , i = 1, 2, 3, ... is an infinite sequence of independent identically distributed random variables each having a Log( p ...