enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Larmor formula - Wikipedia

    en.wikipedia.org/wiki/Larmor_formula

    The radiation reaction phenomenon is one of the key problems and consequences of the Larmor formula. According to classical electrodynamics, a charged particle produces electromagnetic radiation as it accelerates. The particle loses momentum and energy as a result of the radiation, which is carrying it away from it.

  3. Polarizability - Wikipedia

    en.wikipedia.org/wiki/Polarizability

    The polarizability of an atom or molecule is defined as the ratio of its induced dipole moment to the local electric field; in a crystalline solid, one considers the dipole moment per unit cell. [1] Note that the local electric field seen by a molecule is generally different from the macroscopic electric field that would be measured externally.

  4. Dipole - Wikipedia

    en.wikipedia.org/wiki/Dipole

    The size of the induced dipole moment is equal to the product of the strength of the external field and the dipole polarizability of ρ. Dipole moment values can be obtained from measurement of the dielectric constant. Some typical gas phase values given with the unit debye are: [7] carbon dioxide: 0; carbon monoxide: 0.112 D; ozone: 0.53 D

  5. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    The source free equations can be written by the action of the exterior derivative on this 2-form. But for the equations with source terms (Gauss's law and the Ampère-Maxwell equation), the Hodge dual of this 2-form is needed. The Hodge star operator takes a p-form to a (n − p)-form, where n is the number of dimensions.

  6. Axilrod–Teller potential - Wikipedia

    en.wikipedia.org/wiki/Axilrod–Teller_potential

    The Axilrod–Teller potential in molecular physics, is a three-body potential that results from a third-order perturbation correction to the attractive London dispersion interactions (instantaneous induced dipole-induced dipole)

  7. Inhomogeneous electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Inhomogeneous...

    Maxwell's equations can directly give inhomogeneous wave equations for the electric field E and magnetic field B. [1] Substituting Gauss's law for electricity and Ampère's law into the curl of Faraday's law of induction, and using the curl of the curl identity ∇ × (∇ × X) = ∇(∇ ⋅ X) − ∇ 2 X (The last term in the right side is the vector Laplacian, not Laplacian applied on ...

  8. Schwarzschild's equation for radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild's_equation...

    This is often the case when dealing with atmospheres. If a medium is in Local Thermodynamic Equilibrium (LTE), then Schwarzschild's equation can be used to calculate how radiation changes as it travels through the medium. A medium is in LTE when the fraction of molecules in an excited state is determined by the Boltzmann distribution.

  9. Transition dipole moment - Wikipedia

    en.wikipedia.org/wiki/Transition_dipole_moment

    When the transition involves more than one charged particle, the transition dipole moment is defined in an analogous way to an electric dipole moment: The sum of the positions, weighted by charge. If the i th particle has charge q i and position operator r i , then the transition dipole moment is: ( t.d.m. a → b ) = ψ b | ( q 1 r 1 + q 2 r 2 ...