enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Color moments - Wikipedia

    en.wikipedia.org/wiki/Color_moments

    Computing the features - Use the color moments formulae in order to compute the first three moments for each of the color channels in the image. For example, if the HSV color space is used, this means that for each of the images, 9 features in total will be computed (the first three order moments for the Hue, Saturation, and Value channels).

  3. Histogram matching - Wikipedia

    en.wikipedia.org/wiki/Histogram_matching

    An example of histogram matching. In image processing, histogram matching or histogram specification is the transformation of an image so that its histogram matches a specified histogram. [1] The well-known histogram equalization method is a special case in which the specified histogram is uniformly distributed. [2]

  4. Balanced histogram thresholding - Wikipedia

    en.wikipedia.org/wiki/Balanced_histogram...

    Like Otsu's Method [2] and the Iterative Selection Thresholding Method, [3] this is a histogram based thresholding method. This approach assumes that the image is divided in two main classes: The background and the foreground. The BHT method tries to find the optimum threshold level that divides the histogram in two classes. Original image ...

  5. Scott's rule - Wikipedia

    en.wikipedia.org/wiki/Scott's_Rule

    Scott's rule is a method to select the number of bins in a histogram. [1] Scott's rule is widely employed in data analysis software including R , [ 2 ] Python [ 3 ] and Microsoft Excel where it is the default bin selection method.

  6. Sturges's rule - Wikipedia

    en.wikipedia.org/wiki/Sturges's_rule

    Sturges's rule [1] is a method to choose the number of bins for a histogram. Given observations, Sturges's rule suggests using ^ = + ⁡ bins in the histogram. This rule is widely employed in data analysis software including Python [2] and R, where it is the default bin selection method. [3]

  7. Otsu's method - Wikipedia

    en.wikipedia.org/wiki/Otsu's_method

    An example image thresholded using Otsu's algorithm Original image. In computer vision and image processing, Otsu's method, named after Nobuyuki Otsu (大津展之, Ōtsu Nobuyuki), is used to perform automatic image thresholding. [1]

  8. Histogram - Wikipedia

    en.wikipedia.org/wiki/Histogram

    The data shown is a random sample of 10,000 points from a normal distribution with a mean of 0 and a standard deviation of 1. The data used to construct a histogram are generated via a function m i that counts the number of observations that fall into each of the disjoint categories (known as bins ).

  9. Thresholding (image processing) - Wikipedia

    en.wikipedia.org/wiki/Thresholding_(image...

    Histogram shape-based methods, where, for example, the peaks, valleys and curvatures of the smoothed histogram are analyzed. [3] Note that these methods, more than others, make certain assumptions about the image intensity probability distribution (i.e., the shape of the histogram),