enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Perpendicular axis theorem - Wikipedia

    en.wikipedia.org/wiki/Perpendicular_axis_theorem

    The perpendicular axis theorem (or plane figure theorem) states that for a planar lamina with a uniform mass distribution, the moment of inertia about an axis perpendicular to the plane of the lamina is equal to the sum of the moments of inertia about two mutually perpendicular axes in the plane of the lamina, which intersect at the point where the perpendicular axis passes through.

  3. List of moments of inertia - Wikipedia

    en.wikipedia.org/wiki/List_of_moments_of_inertia

    When calculating moments of inertia, it is useful to remember that it is an additive function and exploit the parallel axis and perpendicular axis theorems. This article mainly considers symmetric mass distributions, with constant density throughout the object, and the axis of rotation is taken to be through the center of mass unless otherwise ...

  4. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    The moment of inertia about an axis perpendicular to the movement of the rigid system and through the center of mass is known as the polar moment of inertia. Specifically, it is the second moment of mass with respect to the orthogonal distance from an axis (or pole).

  5. Second moment of area - Wikipedia

    en.wikipedia.org/wiki/Second_moment_of_area

    An arbitrary shape. ρ is the distance to the element dA, with projections x and y on the x and y axes.. The second moment of area for an arbitrary shape R with respect to an arbitrary axis ′ (′ axis is not drawn in the adjacent image; is an axis coplanar with x and y axes and is perpendicular to the line segment) is defined as ′ = where

  6. Second polar moment of area - Wikipedia

    en.wikipedia.org/wiki/Second_polar_moment_of_area

    The second polar moment of area, also known (incorrectly, colloquially) as "polar moment of inertia" or even "moment of inertia", is a quantity used to describe resistance to torsional deformation (), in objects (or segments of an object) with an invariant cross-section and no significant warping or out-of-plane deformation. [1]

  7. Parallel axis theorem - Wikipedia

    en.wikipedia.org/wiki/Parallel_axis_theorem

    The parallel axis theorem, also known as Huygens–Steiner theorem, or just as Steiner's theorem, [1] named after Christiaan Huygens and Jakob Steiner, can be used to determine the moment of inertia or the second moment of area of a rigid body about any axis, given the body's moment of inertia about a parallel axis through the object's center of gravity and the perpendicular distance between ...

  8. Category:Moment (physics) - Wikipedia

    en.wikipedia.org/wiki/Category:Moment_(physics)

    Moment of inertia factor; Moment-area theorem; ... Parallel axis theorem; Perpendicular axis theorem; Q. ... Varignon's theorem (mechanics) Vlasov equation

  9. Stretch rule - Wikipedia

    en.wikipedia.org/wiki/Stretch_rule

    In classical mechanics, the stretch rule (sometimes referred to as Routh's rule) states that the moment of inertia of a rigid object is unchanged when the object is stretched parallel to an axis of rotation that is a principal axis, provided that the distribution of mass remains unchanged except in the direction parallel to the axis. [1]