enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Poynting vector - Wikipedia

    en.wikipedia.org/wiki/Poynting_vector

    Illustration of electromagnetic power flow inside a coaxial cable according to the Poynting vector S, calculated using the electric field E (due to the voltage V) and the magnetic field H (due to current I). DC power transmission through a coaxial cable showing relative strength of electric and magnetic fields and resulting Poynting vector ...

  3. Energy current - Wikipedia

    en.wikipedia.org/wiki/Energy_current

    "Energy current" is a somewhat informal term that is used, on occasion, to describe the process of energy transfer in situations where the transfer can usefully be viewed in terms of a flow. It is particularly used when the transfer of energy is more significant to the discussion than the process by which the energy is transferred.

  4. Exergy - Wikipedia

    en.wikipedia.org/wiki/Exergy

    If there is an energy transformation, the second principle of energy flow transformations says that this process must involve the dissipation of some energy as heat. Measuring the amount of heat released is one way of quantifying the energy, or ability to do work and apply a force over a distance.

  5. Power (physics) - Wikipedia

    en.wikipedia.org/wiki/Power_(physics)

    Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: P = d W d t = F ⋅ v {\displaystyle P={\frac {dW}{dt}}=\mathbf {F ...

  6. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    The ancient Greek understanding of physics was limited to the statics of simple machines (the balance of forces), and did not include dynamics or the concept of work. During the Renaissance the dynamics of the Mechanical Powers, as the simple machines were called, began to be studied from the standpoint of how far they could lift a load, in addition to the force they could apply, leading ...

  7. Skin effect - Wikipedia

    en.wikipedia.org/wiki/Skin_effect

    The current density inside round wire away from the influences of other fields, as function of distance from the axis is given by: [6]: 38 Current density in round wire for various skin depths. Numbers shown on each curve are the ratio of skin depth to wire radius. The curve shown with the infinity sign is the zero frequency (DC) case.

  8. Eddy current - Wikipedia

    en.wikipedia.org/wiki/Eddy_current

    Eddy current brakes use the drag force created by eddy currents as a brake to slow or stop moving objects. Since there is no contact with a brake shoe or drum, there is no mechanical wear. However, an eddy current brake cannot provide a "holding" torque and so may be used in combination with mechanical brakes, for example, on overhead cranes.

  9. Work (electric field) - Wikipedia

    en.wikipedia.org/wiki/Work_(electric_field)

    The work can be done, for example, by electrochemical devices (electrochemical cells) or different metals junctions [clarification needed] generating an electromotive force. Electric field work is formally equivalent to work by other force fields in physics, [1] and the formalism for electrical work is identical to that of mechanical work.