Search results
Results from the WOW.Com Content Network
In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. [1] The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point.
Illustration of electromagnetic power flow inside a coaxial cable according to the Poynting vector S, calculated using the electric field E (due to the voltage V) and the magnetic field H (due to current I). DC power transmission through a coaxial cable showing relative strength of electric and magnetic fields and resulting Poynting vector ...
"Energy current" is a somewhat informal term that is used, on occasion, to describe the process of energy transfer in situations where the transfer can usefully be viewed in terms of a flow. It is particularly used when the transfer of energy is more significant to the discussion than the process by which the energy is transferred.
where: is the rate of change of the energy density in the volume. ∇•S is the energy flow out of the volume, given by the divergence of the Poynting vector S. J•E is the rate at which the fields do work on charges in the volume (J is the current density corresponding to the motion of charge, E is the electric field, and • is the dot product).
Regardless of the driving force, the current density is found to be greatest at the conductor's surface, with a reduced magnitude deeper in the conductor. That decline in current density is known as the skin effect and the skin depth is a measure of the depth at which the current density falls to 1/e of its value near the surface. Over 98% of ...
Conventionally, if the moving charges are positive, then the current density has the same sign as the velocity of the charges. For negative charges, the sign of the current density is opposite to the velocity of the charges. [2]: 749 In SI units, current density (symbol: j) is expressed in the SI base units of amperes per square metre.
Because these forces are exerted mutually, two charges must be present for the forces to take place. These forces are described by Coulomb's law, which says that the greater the magnitude of the charges, the greater the force, and the greater the distance between them, the weaker the force. Informally, the greater the charge of an object, the ...
Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.