Search results
Results from the WOW.Com Content Network
The thermohaline circulation is sometimes called the ocean conveyor belt, the great ocean conveyor, or the global conveyor belt, coined by climate scientist Wallace Smith Broecker. [5] [6] It is also referred to as the meridional overturning circulation, or MOC. This name is used because not every circulation pattern caused by temperature and ...
AMOC in relation to the global thermohaline circulation . The Atlantic meridional overturning circulation (AMOC) is the main current system in the Atlantic Ocean, [1]: 2238 and is also part of the global thermohaline circulation, which connects the world's oceans with a single "conveyor belt" of continuous water exchange. [18]
Ocean currents flow for great distances and together they create the global conveyor belt, which plays a dominant role in determining the climate of many of Earth's regions. More specifically, ocean currents influence the temperature of the regions through which they travel.
The tipping points for ocean current changes include the Atlantic Meridional Overturning Circulation (AMOC), the North Subpolar Gyre and the Southern Ocean overturning circulation. Lastly, the tipping points in terrestrial systems include Amazon rainforest dieback, boreal forest biome shift, Sahel greening, and vulnerable stores of tropical ...
The formation of both of these waters involves the conversion of warm, salty, northward-flowing surface waters to cold, dense, deep waters behind the Greenland-Iceland-Scotland Ridge. Water flow from the North Atlantic current enters the Arctic Ocean through the Norwegian Current, which splits into the Fram Strait and Barents Sea Branch. [9]
English: Thermohaline Circulation (The Great Ocean Conveyor Belt) This animation first depicts thermohaline surface flows over surface density, and illustrates the sinking of water in the dense ocean near Iceland and Greenland. The surface of the ocean then fades away and the animation pulls back to show the global thermohaline circulation.
Thermohaline forcing refers to density-gradient driven motions, whereby density is determined by the temperature (‘thermo’) and salt concentration (‘haline’) of the water. Heat and freshwater fluxes at the ocean's surface play therefore a key role in forming ocean currents. Those currents exert a major effect on regional and global climate.
The Indonesian Throughflow (ITF; Indonesian: Arus Lintas Indonesia) is an ocean current with importance for global climate as is the low-latitude movement of warm, relative freshwater from the north Pacific to the Indian Ocean. It thus serves as a main upper branch of the global heat/salt conveyor belt.