Search results
Results from the WOW.Com Content Network
Glucokinase changes conformation and/or function in parallel with rising glucose concentrations in the physiologically important range of 4–10 M (72–180 mg/dL). It is half-saturated at a glucose concentration of about 8 mM (144 mg/dL). [10] [11] Glucokinase is not inhibited by physiological concentrations of its product, glucose-6-phosphate ...
Glucokinase (GK) is an enzyme that helps in the glycolytic pathway by phosphorylating glucose into glucose-6-phosphate (G6P). It is an isozyme of hexokinase and is found mainly in pancreatic β cells, but also liver, gut, and brain cells where glycolysis cause glucose-induced insulin secretion. [2]
These loss-of-function mutations result in a glucokinase molecule that is less sensitive or less responsive to rising levels of glucose. The beta cells in MODY 2 have a normal ability to make and secrete insulin, but do so only above an abnormally high threshold (e.g., 126–144 mg/dl, or 7-8 mM).
The glucokinase regulatory protein (GKRP) also known as glucokinase (hexokinase 4) regulator (GCKR) is a protein produced in hepatocytes (liver cells). GKRP binds and moves glucokinase (GK), thereby controlling both activity and intracellular location [1] [2] of this key enzyme of glucose metabolism. [3] GKRP is a 68 kD protein of 626 amino acids.
In enzymology, an ADP-specific glucokinase (EC 2.7.1.147) also known as ADP-dependent glucokinase is an enzyme that catalyzes the chemical reaction. ADP + D-glucose AMP + D-glucose 6-phosphate. Thus, the two substrates of this enzyme are ADP and D-glucose, whereas its two products are AMP and D-glucose 6-phosphate.
The gene product is a regulatory protein that inhibits glucokinase in liver and pancreatic islet cells by binding non-covalently to form an inactive complex with the enzyme. This gene is considered a susceptibility gene candidate for a form of maturity onset diabetes of the young (MODY). [provided by RefSeq, Jul 2008].
In enzymology, a gluconokinase (EC 2.7.1.12) is an enzyme that catalyzes the chemical reaction ATP + D-gluconate ⇌ {\displaystyle \rightleftharpoons } ADP + 6-phospho-D-gluconate Thus, the two substrates of this enzyme are ATP and D-gluconate , whereas its two products are ADP and 6-phospho-D-gluconate .
Function: Amylase is an enzyme that is responsible for the breaking of the bonds in starches, polysaccharides, and complex carbohydrates to be turned into simple sugars that will be easier to absorb. Clinical Significance: Amylase also has medical history in the use of Pancreatic Enzyme Replacement Therapy (PERT). One of the components is ...