Search results
Results from the WOW.Com Content Network
a lucky prime. [3] the sum of five consecutive primes (7 + 11 + 13 + 17 + 19). a Heegner number. [4] a Pillai prime since 18! + 1 is divisible by 67, but 67 is not one more than a multiple of 18. [5] palindromic in quinary (232 5) and senary (151 6). a super-prime. (19 is prime) an isolated prime. (65 and 69 are not prime) a sexy prime with 61 ...
This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes.
Shqip; Sicilianu ... composite numbers, for any natural number . [67 ] However ... Prime numbers are used as a metaphor for loneliness and isolation in the Paolo ...
Mersenne primes and perfect numbers are two deeply interlinked types of natural numbers in number theory. Mersenne primes, named after the friar Marin Mersenne, are prime numbers that can be expressed as 2 p − 1 for some positive integer p. For example, 3 is a Mersenne prime as it is a prime number and is expressible as 2 2 − 1.
These numbers have been proved prime by computer with a primality test for their form, ... 67 9145334×3 9145334 + 1 25 December 2023 4,363,441 68 4×5 6181673 – 1
The even number 2p + 2 therefore satisfies Chen's theorem. The Chen primes are named after Chen Jingrun, who proved in 1966 that there are infinitely many such primes. This result would also follow from the truth of the twin prime conjecture as the lower member of a pair of twin primes is by definition a Chen prime. The first few Chen primes are
This category includes articles relating to prime numbers and primality. For a list of prime numbers, see list of prime numbers . This category roughly corresponds to MSC 11A41 Primes and MSC 11A51 Factorization; primality
An odd prime number p is defined to be regular if it does not divide the class number of the pth cyclotomic field Q(ζ p), where ζ p is a primitive pth root of unity. The prime number 2 is often considered regular as well. The class number of the cyclotomic field is the number of ideals of the ring of integers Z(ζ p) up to equivalence.