Search results
Results from the WOW.Com Content Network
The Hadamard code is a linear code, and all linear codes can be generated by a generator matrix.This is a matrix such that () = holds for all {,}, where the message is viewed as a row vector and the vector-matrix product is understood in the vector space over the finite field.
The memory or storage capacity of BAM may be given as (,), where "" is the number of units in the X layer and "" is the number of units in the Y layer. [3]The internal matrix has n x p independent degrees of freedom, where n is the dimension of the first vector (6 in this example) and p is the dimension of the second vector (4).
In numerical analysis, inverse iteration (also known as the inverse power method) is an iterative eigenvalue algorithm. It allows one to find an approximate eigenvector when an approximation to a corresponding eigenvalue is already known. The method is conceptually similar to the power method. It appears to have originally been developed to ...
The all-pairs shortest path problem finds the shortest paths between every pair of vertices v, v' in the graph. The all-pairs shortest paths problem for unweighted directed graphs was introduced by Shimbel (1953) , who observed that it could be solved by a linear number of matrix multiplications that takes a total time of O ( V 4 ) .
The closest pair of points problem or closest pair problem is a problem of computational geometry: given points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane [ 1 ] was among the first geometric problems that were treated at the origins of the systematic ...
Deletion of a key–value pair from a trie involves finding the terminal node with the corresponding string key, marking the terminal indicator and value to false and null correspondingly. [14]: 740 The following is a recursive procedure for removing a string key from rooted trie (x).
where is the kernel function (usually Gaussian), are the variances of the prior on the weight vector (,), and , …, are the input vectors of the training set. [ 4 ] Compared to that of support vector machines (SVM), the Bayesian formulation of the RVM avoids the set of free parameters of the SVM (that usually require cross-validation-based ...
In machine learning, the term tensor informally refers to two different concepts (i) a way of organizing data and (ii) a multilinear (tensor) transformation. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector ...