enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing.. The data is linearly transformed onto a new coordinate system such that the directions (principal components) capturing the largest variation in the data can be easily identified.

  3. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The first principal eigenvector of the graph is also referred to merely as the principal eigenvector. The principal eigenvector is used to measure the centrality of its vertices. An example is Google's PageRank algorithm. The principal eigenvector of a modified adjacency matrix of the

  4. Ordination (statistics) - Wikipedia

    en.wikipedia.org/wiki/Ordination_(statistics)

    Ordination methods can broadly be categorized in eigenvector-, algorithm-, or model-based methods. Many classical ordination techniques, including principal components analysis, correspondence analysis (CA) and its derivatives (detrended correspondence analysis, canonical correspondence analysis, and redundancy analysis, belong to the first group).

  5. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  6. Functional principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Functional_principal...

    Functional principal component analysis (FPCA) is a statistical method for investigating the dominant modes of variation of functional data.Using this method, a random function is represented in the eigenbasis, which is an orthonormal basis of the Hilbert space L 2 that consists of the eigenfunctions of the autocovariance operator.

  7. Principal component regression - Wikipedia

    en.wikipedia.org/wiki/Principal_component_regression

    In statistics, principal component regression (PCR) is a regression analysis technique that is based on principal component analysis (PCA). PCR is a form of reduced rank regression. [1] More specifically, PCR is used for estimating the unknown regression coefficients in a standard linear regression model.

  8. Modes of variation - Wikipedia

    en.wikipedia.org/wiki/Modes_of_variation

    In statistics, modes of variation [1] are a continuously indexed set of vectors or functions that are centered at a mean and are used to depict the variation in a population or sample. Typically, variation patterns in the data can be decomposed in descending order of eigenvalues with the directions represented by the corresponding eigenvectors ...

  9. Courant minimax principle - Wikipedia

    en.wikipedia.org/wiki/Courant_minimax_principle

    Also (in the maximum theorem) subsequent eigenvalues and eigenvectors are found by induction and orthogonal to each other; therefore, = with , =, <. The Courant minimax principle, as well as the maximum principle, can be visualized by imagining that if || x || = 1 is a hypersphere then the matrix A deforms that hypersphere into an ellipsoid .