enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum likelihood estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_likelihood_estimation

    In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data.This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable.

  3. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    For maximum likelihood estimation, the existence of a global maximum of the likelihood function is of the utmost importance. By the extreme value theorem, it suffices that the likelihood function is continuous on a compact parameter space for the maximum likelihood estimator to exist. [7]

  4. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    Finding a maximum likelihood solution typically requires taking the derivatives of the likelihood function with respect to all the unknown values, the parameters and the latent variables, and simultaneously solving the resulting equations. In statistical models with latent variables, this is usually impossible.

  5. M-estimator - Wikipedia

    en.wikipedia.org/wiki/M-estimator

    For a family of probability density functions f parameterized by θ, a maximum likelihood estimator of θ is computed for each set of data by maximizing the likelihood function over the parameter space { θ } . When the observations are independent and identically distributed, a ML-estimate ^ satisfies

  6. Restricted maximum likelihood - Wikipedia

    en.wikipedia.org/wiki/Restricted_maximum_likelihood

    In statistics, the restricted (or residual, or reduced) maximum likelihood (REML) approach is a particular form of maximum likelihood estimation that does not base estimates on a maximum likelihood fit of all the information, but instead uses a likelihood function calculated from a transformed set of data, so that nuisance parameters have no ...

  7. Maximum likelihood sequence estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_likelihood...

    Maximum likelihood sequence estimation is formally the application of maximum likelihood to this problem. That is, the estimate of { x ( t )} is defined to be a sequence of values which maximize the functional

  8. Scoring algorithm - Wikipedia

    en.wikipedia.org/wiki/Scoring_algorithm

    Scoring algorithm, also known as Fisher's scoring, [1] is a form of Newton's method used in statistics to solve maximum likelihood equations numerically, named after Ronald Fisher. Sketch of derivation

  9. Discrepancy function - Wikipedia

    en.wikipedia.org/wiki/Discrepancy_function

    The discrepancy function is a continuous function of the elements of S, the sample covariance matrix, and Σ(θ), the "reproduced" estimate of S obtained by using the parameter estimates and the structural model. In order for "maximum likelihood" to meet the first criterion, it is used in a revised form as the deviance.