Search results
Results from the WOW.Com Content Network
The Antoine equation [3] [4] is a pragmatic mathematical expression of the relation between the vapor pressure and the temperature of pure liquid or solid substances. It is obtained by curve-fitting and is adapted to the fact that vapor pressure is usually increasing and concave as a function of temperature. The basic form of the equation is:
The Hertz–Knudsen equation describes the non-dissociative adsorption of a gas molecule on a surface by expressing the variation of the number of molecules impacting on the surfaces per unit of time as a function of the pressure of the gas and other parameters which characterise both the gas phase molecule and the surface: [1] [2]
Evaporation is a type of vaporization that occurs on the surface of a liquid as it changes into the gas phase. [1] A high concentration of the evaporating substance in the surrounding gas significantly slows down evaporation, such as when humidity affects rate of evaporation of water. [ 2 ]
The gas constant occurs in the ideal gas law: = = where P is the absolute pressure, V is the volume of gas, n is the amount of substance, m is the mass, and T is the thermodynamic temperature. R specific is the mass-specific gas constant. The gas constant is expressed in the same unit as molar heat.
This may be written in the following form, known as the Ostwald–Freundlich equation: =, where is the actual vapour pressure, is the saturated vapour pressure when the surface is flat, is the liquid/vapor surface tension, is the molar volume of the liquid, is the universal gas constant, is the radius of the droplet, and is temperature.
At the interface of a vapor and a liquid/solid, the gas interaction with the liquid/solid dominates the gas behavior, and the gas is, very locally, not in equilibrium. [1] This region, several mean free path lengths thick, is called the Knudsen layer.
Capillary condensation in pores with r<10 nm is often difficult to describe using the Kelvin equation. This is because the Kelvin equation underestimates the size of the pore radius when working on the nanometer scale. To account for this underestimation, the idea of a statistical film thickness, t, has often been invoked.
The Clausius–Clapeyron equation [8]: 509 applies to vaporization of liquids where vapor follows ideal gas law using the ideal gas constant and liquid volume is neglected as being much smaller than vapor volume V. It is often used to calculate vapor pressure of a liquid. [9]