enow.com Web Search

  1. Ad

    related to: gradient formula vector calculus

Search results

  1. Results from the WOW.Com Content Network
  2. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) whose value at a point gives the direction and the rate of fastest increase.

  3. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    The dotted vector, in this case B, is differentiated, while the (undotted) A is held constant. The utility of the Feynman subscript notation lies in its use in the derivation of vector and tensor derivative identities, as in the following example which uses the algebraic identity C⋅(A×B) = (C×A)⋅B:

  4. Gradient theorem - Wikipedia

    en.wikipedia.org/wiki/Gradient_theorem

    The gradient theorem states that if the vector field F is the gradient of some scalar-valued function (i.e., if F is conservative), then F is a path-independent vector field (i.e., the integral of F over some piecewise-differentiable curve is dependent only on end points). This theorem has a powerful converse:

  5. Vector calculus - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus

    Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, . [1] The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration.

  6. Del in cylindrical and spherical coordinates - Wikipedia

    en.wikipedia.org/wiki/Del_in_cylindrical_and...

    The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question. The azimuthal angle is denoted by φ ∈ [ 0 , 2 π ] {\displaystyle \varphi \in [0,2\pi ]} : it is the angle between the x -axis and the projection of the radial vector onto the xy -plane.

  7. Lists of vector identities - Wikipedia

    en.wikipedia.org/wiki/Lists_of_vector_identities

    Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.

  8. Green's identities - Wikipedia

    en.wikipedia.org/wiki/Green's_identities

    This identity is derived from the divergence theorem applied to the vector field F = ψ ∇φ while using an extension of the product rule that ∇ ⋅ (ψ X) = ∇ψ ⋅X + ψ ∇⋅X: Let φ and ψ be scalar functions defined on some region U ⊂ R d, and suppose that φ is twice continuously differentiable, and ψ is once continuously differentiable.

  9. Vector operator - Wikipedia

    en.wikipedia.org/wiki/Vector_operator

    A vector operator is a differential operator used in vector calculus. Vector operators include the gradient, divergence, and curl: Gradient is a vector operator that operates on a scalar field, producing a vector field. Divergence is a vector operator that operates on a vector field, producing a scalar field.

  1. Ad

    related to: gradient formula vector calculus