Search results
Results from the WOW.Com Content Network
Glass and metals are examples of isotropic materials. [3] Common anisotropic materials include wood (because its material properties are different parallel to and perpendicular to the grain) and layered rocks such as slate. Isotropic materials are useful since they are easier to shape, and their behavior is easier to predict.
Isotropic solids tend to be of interest when developing models for physical behavior of materials, as they tend to allow for dramatic simplifications of theory; for example, conductivity in metals of the cubic crystal system can be described with single scalar value, rather than a tensor. [1]
A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another can be compared, thereby aiding in materials selection.
An example of a calamitic mesogen type rigid core is a benzyl cyanide based rod molecule, where the smectic A liquid crystal phase exists between the 60 °C (crystal) and 62 °C (isotropic liquid phase) temperature range. [2]
An anisotropic object or pattern has properties that differ according to direction of measurement. For example, many materials exhibit very different physical or mechanical properties when measured along different axes, e.g. absorbance, refractive index, conductivity, and tensile strength. An example of anisotropy is light coming through a ...
A transversely isotropic material is one with physical properties that are symmetric about an axis that is normal to a plane of isotropy. This transverse plane has infinite planes of symmetry and thus, within this plane, the material properties are the same in all directions. Hence, such materials are also known as "polar anisotropic" materials.
At high temperatures, liquid crystals become an isotropic liquid and at low temperatures, they tend to glassify. In a thermotropic crystal, those phase transitions occur only at temperature extremes; the phase is insensitive to concentration.
In its pure glassy (isotropic) synthetic forms, pyrolytic graphite and carbon fiber graphite are extremely strong, heat-resistant (to 3000 °C) materials, used in reentry shields for missile nosecones, solid rocket engines, high temperature reactors, brake shoes and electric motor brushes.