Search results
Results from the WOW.Com Content Network
A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...
Topography is the study of the forms and features of land surfaces. The topography of an area may refer to the landforms and features themselves, or a description or depiction in maps. Topography is a field of geoscience and planetary science and is concerned with local detail in general, including not only relief , but also natural ...
In mathematics, specifically algebraic topology, the mapping cylinder [1] of a continuous function between topological spaces and is the quotient = (([,])) / where the denotes the disjoint union, and ~ is the equivalence relation generated by
The Topologist's sine curve, a useful example in point-set topology.It is connected but not path-connected. In mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology.
In mathematics, geometry and topology is an umbrella term for the historically distinct disciplines of geometry and topology, as general frameworks allow both disciplines to be manipulated uniformly, most visibly in local to global theorems in Riemannian geometry, and results like the Gauss–Bonnet theorem and Chern–Weil theory.
Examples of different knots including the trivial knot (top left) and the trefoil knot (below it) A knot diagram of the trefoil knot, the simplest non-trivial knot. In topology, knot theory is the study of mathematical knots.
Topography – Study of the forms of land surfaces; Topology – Branch of mathematics – study of places and their natural features [citation needed] Toponymy, also known as Toponymics – Study of place names; Toxicology – Study of substances harmful to living organisms
Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane. The concept of a manifold is central to many parts of geometry and modern mathematical physics because it allows complicated structures to be described in terms of well-understood topological properties of simpler spaces.