enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    The gradient of the function f(x,y) = −(cos 2 x + cos 2 y) 2 depicted as a projected vector field on the bottom plane. The gradient (or gradient vector field) of a scalar function f(x 1, x 2, x 3, …, x n) is denoted ∇f or ∇ → f where ∇ denotes the vector differential operator, del.

  3. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    More generally, for a function of n variables (, …,), also called a scalar field, the gradient is the vector field: = (, …,) = + + where (=,,...,) are mutually orthogonal unit vectors. As the name implies, the gradient is proportional to, and points in the direction of, the function's most rapid (positive) change.

  4. Gradient theorem - Wikipedia

    en.wikipedia.org/wiki/Gradient_theorem

    The gradient theorem states that if the vector field F is the gradient of some scalar-valued function (i.e., if F is conservative), then F is a path-independent vector field (i.e., the integral of F over some piecewise-differentiable curve is dependent only on end points). This theorem has a powerful converse:

  5. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    A vector field V defined on an open set S is called a gradient field or a conservative field if there exists a real-valued function (a scalar field) f on S such that = = (,,, …,). The associated flow is called the gradient flow , and is used in the method of gradient descent .

  6. Conservative vector field - Wikipedia

    en.wikipedia.org/wiki/Conservative_vector_field

    In vector calculus, a conservative vector field is a vector field that is the gradient of some function. [1] A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not change the value of the line integral. Path independence of the line integral is equivalent to the ...

  7. Tensor derivative (continuum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Tensor_derivative...

    Consider a vector field v and an arbitrary constant vector c. In index notation, the cross product is given by v × c = ε i j k v j c k e i {\displaystyle \mathbf {v} \times \mathbf {c} =\varepsilon _{ijk}~v_{j}~c_{k}~\mathbf {e} _{i}} where ε i j k {\displaystyle \varepsilon _{ijk}} is the permutation symbol , otherwise known as the Levi ...

  8. Vector calculus - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus

    Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, . [1] The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration.

  9. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    By example, in physics, the electric field is the negative vector gradient of the electric potential. The directional derivative of a scalar function f(x) of the space vector x in the direction of the unit vector u (represented in this case as a column vector) is defined using the gradient as follows.