Search results
Results from the WOW.Com Content Network
Valence shell electron pair repulsion (VSEPR) theory (/ ˈ v ɛ s p ər, v ə ˈ s ɛ p ər / VESP-ər, [1]: 410 və-SEP-ər [2]) is a model used in chemistry to predict the geometry of individual molecules from the number of electron pairs surrounding their central atoms. [3]
This shape is found when there are four bonds all on one central atom, with no extra unshared electron pairs. In accordance with the VSEPR (valence-shell electron pair repulsion theory), the bond angles between the electron bonds are arccos(− 1 / 3 ) = 109.47°. For example, methane (CH 4) is a tetrahedral molecule.
By far the most common form of aluminium bromide is Al 2 Br 6. This species exists as hygroscopic colorless solid at standard conditions. Typical impure samples are yellowish or even red-brown due to the presence of iron-containing impurities. It is prepared by the reaction of HBr with Al: 2 Al + 6 HBr → Al 2 Br 6 + 3 H 2
[11] [12] This electron distance maximization happens to achieve the most stable electron distribution. [11] [12] The result of VSEPR theory is being able to predict bond angles with accuracy. According to VSEPR theory, the geometry of a molecule can be predicted by counting how many electron pairs and atoms are connected to a central atom.
The lower-energy MO is bonding with electron density concentrated between the two H nuclei. The higher-energy MO is anti-bonding with electron density concentrated behind each H nucleus. Molecular orbital (MO) theory uses a linear combination of atomic orbitals (LCAO) to represent molecular orbitals resulting from bonds between atoms.
From memory the rule is that the odd electron (or "half electron pair") counts as a full electron pair for determining the basic shape, but takes up less space for determining the bond angle - ex. bent 134° in NO 2 vs. bent 120° (approx.) in NO 2-and 117-118° in ClO 2 vs. close to tetrahedral (109°) in ClO 2-.
The New York Jets' trying season has hit a new low – yet one long familiar to the franchise.. With Sunday's 32-26 overtime loss to the Miami Dolphins, the Jets (3-10) were officially eliminated ...
Gilbert N. Lewis introduced the concepts of both the electron pair and the covalent bond in a landmark paper he published in 1916. [1] [2] MO diagrams depicting covalent (left) and polar covalent (right) bonding in a diatomic molecule. In both cases a bond is created by the formation of an electron pair.