Search results
Results from the WOW.Com Content Network
Salting out (also known as salt-induced precipitation, salt fractionation, anti-solvent crystallization, precipitation crystallization, or drowning out) [1] is a purification technique that utilizes the reduced solubility of certain molecules in a solution of very high ionic strength.
Precipitate formation is useful in the detection of the type of cation in a salt. To do this, an alkali first reacts with the unknown salt to produce a precipitate that is the hydroxide of the unknown salt. To identify the cation, the color of the precipitate and its solubility in excess are noted.
An example of this crystallization process is the production of Glauber's salt, a crystalline form of sodium sulfate. In the diagram, where equilibrium temperature is on the x-axis and equilibrium concentration (as mass percent of solute in saturated solution) in y-axis , it is clear that sulfate solubility quickly decreases below 32.5 °C.
Precipitation is the formation of a solid in a solution or inside another solid during a chemical reaction. It usually takes place when the concentration of dissolved ions exceeds the solubility limit [ 34 ] and forms an insoluble salt.
A schematic electron shell diagram of sodium and fluorine atoms undergoing a redox reaction to form sodium fluoride. Sodium loses its outer electron to give it a stable electron configuration, and this electron enters the fluorine atom exothermically. The oppositely charged ions – typically a great many of them – are then attracted to each ...
The minerals precipitate out of solution in the reverse order of their solubilities, such that the order of precipitation from sea water is: Calcite (CaCO 3) and dolomite (CaMg(CO 3) 2) Gypsum (CaSO 4 · 2 H 2 O) and anhydrite (CaSO 4). Halite (i.e. common salt, NaCl) Potassium and magnesium salts
Ammonium sulfate is an inorganic salt with a high solubility that disassociates into ammonium (NH + 4) and sulfate (SO 2− 4) in aqueous solutions. [1] Ammonium sulfate is especially useful as a precipitant because it is highly soluble, stabilizes protein structure, has a relatively low density, is readily available, and is relatively inexpensive.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.