Search results
Results from the WOW.Com Content Network
A regular octahedron is an octahedron that is a regular polyhedron. All the faces of a regular octahedron are equilateral triangles of the same size, and exactly four triangles meet at each vertex. A regular octahedron is convex, meaning that for any two points within it, the line segment connecting them lies entirely within it.
Since it has 8 faces, it is an octahedron. However, the term octahedron is primarily used to refer to the regular octahedron, which has eight triangular faces. Because of the ambiguity of the term octahedron and tilarity of the various eight-sided figures, the term is rarely used without clarification.
An object with this symmetry is characterized by the part of the object in the fundamental domain, for example the cube is given by z = 1, and the octahedron by x + y + z = 1 (or the corresponding inequalities, to get the solid instead of the surface). ax + by + cz = 1 gives a polyhedron with 48 faces, e.g. the disdyakis dodecahedron.
A wedge is a polyhedron of a rectangular base, with the faces are two isosceles triangles and two trapezoids that meet at the top of an edge. [1]. A prismatoid is defined as a polyhedron where its vertices lie on two parallel planes, with its lateral faces are triangles, trapezoids, and parallelograms; [2] the wedge is an example of prismatoid because of its top edge is parallel to the ...
It is an example of many classes of polyhedra: Platonic solid, regular polyhedron, parallelohedron, zonohedron, and plesiohedron. The dual polyhedron of a cube is the regular octahedron. The cube is the three-dimensional hypercube, a family of polytopes also including the two-dimensional square and four-dimensional tesseract.
The deltoidal icositetrahedron is a member of a family of duals to the uniform polyhedra related to the cube and regular octahedron. When projected onto a sphere (see right), it can be seen that the edges make up the edges of a cube and regular octahedron arranged in their dual positions. It can also be seen that the 3- and 4-fold corners can ...
Simple examples of Goldberg polyhedra include the dodecahedron and truncated icosahedron. Other forms can be described by taking a chess knight move from one pentagon to the next: first take m steps in one direction, then turn 60° to the left and take n steps. Such a polyhedron is denoted GP(m,n).
As an example, the six points (0,0,±1), (0,±1,0), and (±1,0,0) form the vertices of a regular octahedron, with each point opposite in the octahedron to its negation, but this is not flexible. Instead, these same six points can be paired up differently to form a Bricard octahedron, with a diagonal axis of symmetry.