enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pyruvate carboxylase - Wikipedia

    en.wikipedia.org/wiki/Pyruvate_carboxylase

    The reaction it catalyzes is: pyruvate + HCO − 3 + ATP → oxaloacetate + ADP + P. It is an important anaplerotic reaction that creates oxaloacetate from pyruvate. PC contains a biotin prosthetic group [1] and is typically localized to the mitochondria in eukaryotes with exceptions to some fungal species such as Aspergillus nidulans which have a cytosolic PC.

  3. Anaplerotic reactions - Wikipedia

    en.wikipedia.org/wiki/Anaplerotic_reactions

    This reaction is catalysed by pyruvate carboxylase, an enzyme activated by acetyl-CoA, indicating a lack of oxaloacetate. It occurs in animal mitochondria. Most important anaplerotic reaction; depending on severity, deficiency causes lactic acidosis, severe psychomotor deficiency or death in infancy

  4. Pyruvic acid - Wikipedia

    en.wikipedia.org/wiki/Pyruvic_acid

    Pyruvate, the conjugate base, CH 3 COCOO −, is an intermediate in several metabolic pathways throughout the cell. Pyruvic acid can be made from glucose through glycolysis, converted back to carbohydrates (such as glucose) via gluconeogenesis, or converted to fatty acids through a reaction with acetyl-CoA. [3]

  5. Pyruvate decarboxylase - Wikipedia

    en.wikipedia.org/wiki/Pyruvate_decarboxylase

    Pyruvate decarboxylase is an enzyme (EC 4.1.1.1) that catalyses the decarboxylation of pyruvic acid to acetaldehyde. It is also called 2-oxo-acid carboxylase, alpha-ketoacid carboxylase, and pyruvic decarboxylase. [ 1 ]

  6. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    d -Glucose + 2 [NAD] + + 2 [ADP] + 2 [P] i 2 × Pyruvate 2 × + 2 [NADH] + 2 H + + 2 [ATP] + 2 H 2 O Glycolysis pathway overview The use of symbols in this equation makes it appear unbalanced with respect to oxygen atoms, hydrogen atoms, and charges. Atom balance is maintained by the two phosphate (P i) groups: Each exists in the form of a hydrogen phosphate anion, dissociating to contribute ...

  7. Gluconeogenesis - Wikipedia

    en.wikipedia.org/wiki/Gluconeogenesis

    Many of the reactions are the reverse of steps found in glycolysis. [citation needed] Gluconeogenesis begins in the mitochondria with the formation of oxaloacetate by the carboxylation of pyruvate. This reaction also requires one molecule of ATP, and is catalyzed by pyruvate carboxylase.

  8. C4 carbon fixation - Wikipedia

    en.wikipedia.org/wiki/C4_carbon_fixation

    This reaction requires inorganic phosphate and ATP plus pyruvate, producing PEP, AMP, and inorganic pyrophosphate (PP i). The next step is the carboxylation of PEP by the PEP carboxylase enzyme (PEPC) producing oxaloacetate. Both of these steps occur in the mesophyll cells: pyruvate + P i + ATP → PEP + AMP + PP i PEP + CO 2 → oxaloacetate

  9. Oxaloacetic acid - Wikipedia

    en.wikipedia.org/wiki/Oxaloacetic_acid

    Now this pyruvate can easily enter the mitochondria, where it is carboxylated again to oxaloacetate by pyruvate carboxylase. In this way, the transfer of acetyl-CoA that is from the mitochondria into the cytoplasm produces a molecule of NADH. The overall reaction, which is spontaneous, may be summarized as: