Search results
Results from the WOW.Com Content Network
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.
When a partial fraction term has a single (i.e. unrepeated) binomial in the denominator, the numerator is a residue of the function defined by the input fraction. We calculate each respective numerator by (1) taking the root of the denominator (i.e. the value of x that makes the denominator zero) and (2) then substituting this root into the ...
In complex analysis, a partial fraction expansion is a way of writing a meromorphic function as an infinite sum of rational functions and polynomials. When f ( z ) {\displaystyle f(z)} is a rational function, this reduces to the usual method of partial fractions .
Partial fraction decomposition; Partial fractions in complex analysis This page was last edited on 4 October 2006, at 20:40 (UTC). Text is available under the ...
For example, the fourth power of 1 + x is ... Partial fraction decomposition. The partial fraction decomposition of the reciprocal is given by ...
This is useful in solving such recurrences, since by using partial fraction decomposition we can write any proper rational function as a sum of factors of the form 1 / (ax + b) and expand these as geometric series, giving an explicit formula for the Taylor coefficients; this is the method of generating functions.
Conversely, it can be used to express any meromorphic function as a sum of partial fractions. It is sister to the Weierstrass factorization theorem, which asserts existence of holomorphic functions with prescribed zeros. The theorem is named after the Swedish mathematician Gösta Mittag-Leffler who published versions of the theorem in 1876 and ...
The fraction can then be split into a sum using a partial fraction decomposition before Fourier transforming back to and space. This process yields identities that relate integrals of Green's functions and sums of the same.