enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Affine cipher - Wikipedia

    en.wikipedia.org/wiki/Affine_cipher

    The possible values that a could be are 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, and 25. The value for b can be arbitrary as long as a does not equal 1 since this is the shift of the cipher. Thus, the encryption function for this example will be y = E(x) = (5x + 8) mod 26. The first step in encrypting the message is to write the numeric values of ...

  3. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    Name First elements Short description OEIS Kolakoski sequence: 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, ... The n th term describes the length of the n th run : A000002: Euler's ...

  4. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    Even and odd numbers: An integer is even if it is a multiple of 2, and is odd otherwise. Prime number: A positive integer with exactly two positive divisors: itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ...

  5. List of mathematical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_constants

    A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]

  6. 1/2 + 1/4 + 1/8 + 1/16 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/...

    This series was used as a representation of two of Zeno's paradoxes. [2] For example, in the paradox of Achilles and the Tortoise, the warrior Achilles was to race against a tortoise. The track is 100 meters long. Achilles could run at 10 m/s, while the tortoise only 5. The tortoise, with a 10-meter advantage, Zeno argued, would win.

  7. 1 + 2 + 3 + 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    where f (2k−1) is the (2k − 1)th derivative of f and B 2k is the (2k)th Bernoulli number: B 2 = ⁠ 1 / 6 ⁠, B 4 = ⁠− + 1 / 30 ⁠, and so on. Setting f ( x ) = x , the first derivative of f is 1, and every other term vanishes, so [ 15 ]

  8. Numeral system - Wikipedia

    en.wikipedia.org/wiki/Numeral_system

    In base 10, ten different digits 0, ..., 9 are used and the position of a digit is used to signify the power of ten that the digit is to be multiplied with, as in 304 = 3×100 + 0×10 + 4×1 or more precisely 3×10 2 + 0×10 1 + 4×10 0. Zero, which is not needed in the other systems, is of crucial importance here, in order to be able to "skip ...

  9. Colossally abundant number - Wikipedia

    en.wikipedia.org/wiki/Colossally_abundant_number

    This is true in the case of 6; 6's divisors are 1,2,3, and 6, but an abundant number is defined to be one where the sum of the divisors, excluding itself, is greater than the number itself; 1+2+3=6, so this condition is not met (and 6 is instead a perfect number). However all colossally abundant numbers are also superabundant numbers. [12]