enow.com Web Search

  1. Ads

    related to: parallel lines worksheets measure 3
  2. This site is a teacher's paradise! - The Bender Bunch

    • Educational Songs

      Explore catchy, kid-friendly tunes

      to get your kids excited to learn.

    • Digital Games

      Turn study time into an adventure

      with fun challenges & characters.

Search results

  1. Results from the WOW.Com Content Network
  2. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    Since these are equivalent properties, any one of them could be taken as the definition of parallel lines in Euclidean space, but the first and third properties involve measurement, and so, are "more complicated" than the second. Thus, the second property is the one usually chosen as the defining property of parallel lines in Euclidean geometry ...

  3. Distance between two parallel lines - Wikipedia

    en.wikipedia.org/wiki/Distance_between_two...

    the distance between the two lines is the distance between the two intersection points of these lines with the perpendicular line y = − x / m . {\displaystyle y=-x/m\,.} This distance can be found by first solving the linear systems

  4. Coplanarity - Wikipedia

    en.wikipedia.org/wiki/Coplanarity

    This occurs if the lines are parallel, or if they intersect each other. Two lines that are not coplanar are called skew lines . Distance geometry provides a solution technique for the problem of determining whether a set of points is coplanar, knowing only the distances between them.

  5. Intercept theorem - Wikipedia

    en.wikipedia.org/wiki/Intercept_theorem

    The intercept theorem, also known as Thales's theorem, basic proportionality theorem or side splitter theorem, is an important theorem in elementary geometry about the ratios of various line segments that are created if two rays with a common starting point are intercepted by a pair of parallels.

  6. Parallel curve - Wikipedia

    en.wikipedia.org/wiki/Parallel_curve

    A parallel of a curve is the envelope of a family of congruent circles centered on the curve. It generalises the concept of parallel (straight) lines. It can also be defined as a curve whose points are at a constant normal distance from a given curve. [1]

  7. Point at infinity - Wikipedia

    en.wikipedia.org/wiki/Point_at_infinity

    The existence of parallel lines leads to establishing a point at infinity which represents the intersection of these parallels. This axiomatic symmetry grew out of a study of graphical perspective where a parallel projection arises as a central projection where the center C is a point at infinity, or figurative point . [ 5 ]

  8. Affine geometry - Wikipedia

    en.wikipedia.org/wiki/Affine_geometry

    Pappus' law: if the red lines are parallel and the blue lines are parallel, then the dotted black lines must be parallel. As affine geometry deals with parallel lines, one of the properties of parallels noted by Pappus of Alexandria has been taken as a premise: [9] [10] Suppose A, B, C are on one line and A', B', C' on another.

  9. Playfair's axiom - Wikipedia

    en.wikipedia.org/wiki/Playfair's_axiom

    Antecedent of Playfair's axiom: a line and a point not on the line Consequent of Playfair's axiom: a second line, parallel to the first, passing through the point. In geometry, Playfair's axiom is an axiom that can be used instead of the fifth postulate of Euclid (the parallel postulate):

  1. Ads

    related to: parallel lines worksheets measure 3