Search results
Results from the WOW.Com Content Network
Data mining in general and rule induction in detail are trying to create algorithms without human programming but with analyzing existing data structures. [1]: 415- In the easiest case, a rule is expressed with “if-then statements” and was created with the ID3 algorithm for decision tree learning.
Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning. In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations.
In decision tree learning, ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan [1] used to generate a decision tree from a dataset. ID3 is the precursor to the C4.5 algorithm, and is typically used in the machine learning and natural language processing domains.
A deeper tree can influence the runtime in a negative way. If a certain classification algorithm is being used, then a deeper tree could mean the runtime of this classification algorithm is significantly slower. There is also the possibility that the actual algorithm building the decision tree will get significantly slower as the tree gets deeper.
Inductive learning had been divided into two types: decision tree (DT) and covering algorithms (CA). DTs discover rules using decision tree based on the concept of divide-and-conquer, while CA directly induces rules from the training set based on the concept of separate and conquers.
Pre-pruning procedures prevent a complete induction of the training set by replacing a stop criterion in the induction algorithm (e.g. max. Tree depth or information gain (Attr)> minGain). Pre-pruning methods are considered to be more efficient because they do not induce an entire set, but rather trees remain small from the start.
This algorithm has a few base cases. All the samples in the list belong to the same class. When this happens, it simply creates a leaf node for the decision tree saying to choose that class. None of the features provide any information gain. In this case, C4.5 creates a decision node higher up the tree using the expected value of the class.
The feature with the optimal split i.e., the highest value of information gain at a node of a decision tree is used as the feature for splitting the node. The concept of information gain function falls under the C4.5 algorithm for generating the decision trees and selecting the optimal split for a decision tree node. [1] Some of its advantages ...