Search results
Results from the WOW.Com Content Network
In liquid water at high temperatures, (e.g. that approaching the critical temperature), the solubility of ionic solutes tends to decrease due to the change of properties and structure of liquid water; the lower dielectric constant results in a less polar solvent and in a change of hydration energy affecting the ΔG of the dissolution reaction.
Solvation or dissolution is a kinetic process and is quantified by its rate. Solubility quantifies the dynamic equilibrium state achieved when the rate of dissolution equals the rate of precipitation. The consideration of the units makes the distinction clearer. The typical unit for dissolution rate is mol/s.
In such cases involving strongly dipolar, slowly relaxing solvents, solvation of the transition state does not play a very large role in affecting the reaction rate. Instead, dynamic contributions of the solvent (such as friction, density, internal pressure, or viscosity) play a large role in affecting the reaction rate. [6] [9]
A solubility equilibrium exists when a chemical compound in the solid state is in chemical equilibrium with a solution containing the compound. This type of equilibrium is an example of dynamic equilibrium in that some individual molecules migrate between the solid and solution phases such that the rates of dissolution and precipitation are equal to one another.
Substance A and B are somewhat homogenous in a system prior to the introduction of substance C. [10] At the beginning of the leaching process, substance C will work at dissolving the surficial substance B at a fairly high rate. [1] The rate of dissolution will decrease substantially once it needs to penetrate through the pores of substance A in ...
Ionic compounds, when dissolved in water, dissociate into ions. The total electrolyte concentration in solution will affect important properties such as the dissociation constant or the solubility of different salts. One of the main characteristics of a solution with dissolved ions is the ionic strength.
For instance, water warms when treated with CaCl 2 (anhydrous calcium chloride) as a consequence of the large heat of hydration. However, the hexahydrate, CaCl 2 ·6H 2 O cools the water upon dissolution. The latter happens because the hydration energy does not completely overcome the lattice energy, and the remainder has to be taken from the ...
A classic example is when water molecules arrange around a metal ion. If the metal ion is a cation, the electronegative oxygen atom of the water molecule would be attracted electrostatically to the positive charge on the metal ion. The result is a solvation shell of water molecules that surround the ion.