Ad
related to: solving matrix equations for x and y
Search results
Results from the WOW.Com Content Network
To solve a matrix ODE according to the three steps detailed above, using simple matrices in the process, let us find, say, a function x and a function y both in terms of the single independent variable t, in the following homogeneous linear differential equation of the first order,
Matrices can be used to compactly write and work with multiple linear equations, that is, systems of linear equations. For example, if A is an m×n matrix, x designates a column vector (that is, n×1-matrix) of n variables x 1, x 2, ..., x n, and b is an m×1-column vector, then the matrix equation =
If we condense the skew entries into a vector, (x,y,z), then we produce a 90° rotation around the x-axis for (1, 0, 0), around the y-axis for (0, 1, 0), and around the z-axis for (0, 0, 1). The 180° rotations are just out of reach; for, in the limit as x → ∞ , ( x , 0, 0) does approach a 180° rotation around the x axis, and similarly for ...
The old coordinates (x, y, z) of a point Q are related to its new coordinates (x′, y′, z′) by [14] [′ ′ ′] = [ ] []. Generalizing to any finite number of dimensions, a rotation matrix A {\displaystyle A} is an orthogonal matrix that differs from the identity matrix in at most four elements.
Consider a system of n linear equations for n unknowns, represented in matrix multiplication form as follows: = where the n × n matrix A has a nonzero determinant, and the vector = (, …,) is the column vector of the variables. Then the theorem states that in this case the system has a unique solution, whose individual values for the unknowns ...
Once y is also eliminated from the third row, the result is a system of linear equations in triangular form, and so the first part of the algorithm is complete. From a computational point of view, it is faster to solve the variables in reverse order, a process known as back-substitution. One sees the solution is z = −1, y = 3, and x = 2. So ...
At any step in a Gauss-Seidel iteration, solve the first equation for in terms of , …,; then solve the second equation for in terms of just found and the remaining , …,; and continue to . Then, repeat iterations until convergence is achieved, or break if the divergence in the solutions start to diverge beyond a predefined level.
Starting from the n-dimensional system y t = Ay t−1, we can extract the dynamics of one of the state variables, say y 1. The above solution equation for y t shows that the solution for y 1,t is in terms of the n eigenvalues of A. Therefore the equation describing the evolution of y 1 by itself
Ad
related to: solving matrix equations for x and y