Ads
related to: solving matrix equations algebrakutasoftware.com has been visited by 10K+ users in the past month
uslegalforms.com has been visited by 100K+ users in the past month
Search results
Results from the WOW.Com Content Network
Matrices have a long history of application in solving linear equations but they were known as arrays until the 1800s. The Chinese text The Nine Chapters on the Mathematical Art written in the 10th–2nd century BCE is the first example of the use of array methods to solve simultaneous equations, [103] including the concept of determinants.
Systems of linear equations form a fundamental part of linear algebra. Historically, linear algebra and matrix theory has been developed for solving such systems. In the modern presentation of linear algebra through vector spaces and matrices, many problems may be interpreted in terms of linear systems. For example, let
In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the ...
For example, to solve a system of n equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires n(n + 1)/2 divisions, (2n 3 + 3n 2 − 5n)/6 multiplications, and (2n 3 + 3n 2 − 5n)/6 subtractions, [10] for a total of approximately 2n 3 /3 operations.
Computers usually solve square systems of linear equations using LU decomposition, and it is also a key step when inverting a matrix or computing the determinant of a matrix. It is also sometimes referred to as LR decomposition (factors into left and right triangular matrices).
For many problems in applied linear algebra, it is useful to adopt the perspective of a matrix as being a concatenation of column vectors. For example, when solving the linear system =, rather than understanding x as the product of with b, it is helpful to think of x as the vector of coefficients in the linear expansion of b in the basis formed by the columns of A.
Ads
related to: solving matrix equations algebrakutasoftware.com has been visited by 10K+ users in the past month
uslegalforms.com has been visited by 100K+ users in the past month