enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross-coupling reaction - Wikipedia

    en.wikipedia.org/wiki/Cross-coupling_reaction

    Many mechanisms exist reflecting the myriad types of cross-couplings, including those that do not require metal catalysts. [7] Often, however, cross-coupling refers to a metal-catalyzed reaction of a nucleophilic partner with an electrophilic partner. Mechanism proposed for Kumada coupling (L = Ligand, Ar = Aryl).

  3. Hiyama coupling - Wikipedia

    en.wikipedia.org/wiki/Hiyama_coupling

    The Hiyama coupling is a palladium-catalyzed cross-coupling reaction of organosilanes with organic halides used in organic chemistry to form carbon–carbon bonds (C-C bonds). This reaction was discovered in 1988 by Tamejiro Hiyama and Yasuo Hatanaka as a method to form carbon-carbon bonds synthetically with chemo - and regioselectivity . [ 1 ]

  4. XPhos - Wikipedia

    en.wikipedia.org/wiki/XPhos

    Both palladium and copper complexes of the compound exhibit high activity for the coupling of aryl halides and aryl tosylates with various amides. [1] It is also an efficient ligand for several commonly used CC bond-forming cross-coupling reactions, including the Negishi, Suzuki, and the copper-free Sonogashira coupling reactions.

  5. Coupling reaction - Wikipedia

    en.wikipedia.org/wiki/Coupling_reaction

    The most common type of coupling reaction is the cross coupling reaction. [1] [2] [3] Richard F. Heck, Ei-ichi Negishi, and Akira Suzuki were awarded the 2010 Nobel Prize in Chemistry for developing palladium-catalyzed cross coupling reactions. [4] [5] Broadly speaking, two types of coupling reactions are recognized:

  6. Ullmann condensation - Wikipedia

    en.wikipedia.org/wiki/Ullmann_condensation

    The coupling of 2-chlorobenzoic acid and aniline is illustrative: [4] C 6 H 5 NH 2 + ClC 6 H 4 CO 2 H + KOH → C 6 H 5 N(H)−C 6 H 4 CO 2 H + KCl + H 2 O. A typical catalyst is formed from copper(I) iodide and phenanthroline. The reaction is an alternative to the Buchwald–Hartwig amination reaction.

  7. Murahashi coupling - Wikipedia

    en.wikipedia.org/wiki/Murahashi_Coupling

    This reaction is notable for using organolithiums as opposed to other cross-coupling reactions which utilize various metal-carbon compounds (metal = tin, magnesium, boron, silicon, zinc). Since the production of these other coupling reagents relies heavily upon organolithiums (especially in the case of organozinc and organomagnesium compounds ...

  8. Decarboxylative cross-coupling - Wikipedia

    en.wikipedia.org/wiki/Decarboxylative_cross-coupling

    Many decarboxylative cross coupling reactions involve the breaking of sp 2 C–COOH and sp C–COOH bonds, therefore subsequent studies have attempted to enable cross coupling with sp 3 C carboxylic acids. One such reaction by Shang et al. described a palladium catalyzed cross coupling that enables the formation of functionalized pyridines ...

  9. Palladium–NHC complex - Wikipedia

    en.wikipedia.org/wiki/Palladium–NHC_complex

    In Suzuki-Miyaura cross-couplings, the traditional coupling partners are organobromides and organoboron compounds. While Suzuki-Miyaura cross-couplings typically employ organobromides as coupling partners, organochlorides are more desirable electrophiles for cross-coupling due to their lower cost. The sluggish reactivity of the C-Cl bond is ...