Ads
related to: spectral graph theory chung pdf file editor converter gratisA Must Have in your Arsenal - cmscritic
Search results
Results from the WOW.Com Content Network
Fan-Rong King Chung Graham (Chinese: 金芳蓉; pinyin: Jīn Fāngróng; born October 9, 1949), known professionally as Fan Chung, is a Taiwanese-born American mathematician who works mainly in the areas of spectral graph theory, extremal graph theory and random graphs, in particular in generalizing the Erdős–Rényi model for graphs with general degree distribution (including power-law ...
Spectral graph theory emerged in the 1950s and 1960s. Besides graph theoretic research on the relationship between structural and spectral properties of graphs, another major source was research in quantum chemistry , but the connections between these two lines of work were not discovered until much later. [ 15 ]
The expander mixing lemma intuitively states that the edges of certain -regular graphs are evenly distributed throughout the graph. In particular, the number of edges between two vertex subsets S {\displaystyle S} and T {\displaystyle T} is always close to the expected number of edges between them in a random d {\displaystyle d} - regular graph ...
In the mathematical field of spectral graph theory, a Ramanujan graph is a regular graph whose spectral gap is almost as large as possible (see extremal graph theory). Such graphs are excellent spectral expanders .
Algebraic graph theory is a branch of mathematics in which algebraic methods are applied to problems about graphs. This is in contrast to geometric, combinatoric, or algorithmic approaches. There are three main branches of algebraic graph theory, involving the use of linear algebra, the use of group theory, and the study of graph invariants.
Analogously to the classical Fourier transform, graph Fourier transform provides a way to represent a signal in two different domains: the vertex domain and the graph spectral domain. Note that the definition of the graph Fourier transform and its inverse depend on the choice of Laplacian eigenvectors, which are not necessarily unique. [3]