enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spheroid - Wikipedia

    en.wikipedia.org/wiki/Spheroid

    The oblate spheroid is generated by rotation about the z-axis of an ellipse with semi-major axis a and semi-minor axis c, therefore e may be identified as the eccentricity. (See ellipse.) [2] A prolate spheroid with c > a has surface area

  3. Ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid

    If the third axis is shorter, the ellipsoid is a sphere that has been flattened (called an oblate spheroid). If the third axis is longer, it is a sphere that has been lengthened (called a prolate spheroid). If the three axes have the same length, the ellipsoid is a sphere.

  4. Oblate spheroidal coordinates - Wikipedia

    en.wikipedia.org/wiki/Oblate_spheroidal_coordinates

    As before, the oblate spheroid corresponding to σ is shown in red, and φ measures the azimuthal angle between the green and yellow half-planes. However, the surface of constant τ is a full one-sheet hyperboloid, shown in blue. This produces a two-fold degeneracy, shown by the two black spheres located at (x, y, ±z).

  5. Figure of the Earth - Wikipedia

    en.wikipedia.org/wiki/Figure_of_the_Earth

    Better approximations can be made by modeling the entire surface as an oblate spheroid, using spherical harmonics to approximate the geoid, or modeling a region with a best-fit reference ellipsoid. For surveys of small areas, a planar (flat) model of Earth's surface suffices because the local topography overwhelms the curvature.

  6. World Geodetic System - Wikipedia

    en.wikipedia.org/wiki/World_Geodetic_System

    The WGS 84 datum surface is an oblate spheroid with equatorial radius a = 6 378 137 m at the equator and flattening f = 1 ⁄ 298.257 223 563. The refined value of the WGS 84 gravitational constant (mass of Earth's atmosphere included) is GM = 3.986 004 418 × 10 14 m 3 /s 2. The angular velocity of the Earth is defined to be ω = 72.921 15 × ...

  7. Earth ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Earth_ellipsoid

    In 1687 Isaac Newton published the Principia in which he included a proof that a rotating self-gravitating fluid body in equilibrium takes the form of a flattened ("oblate") ellipsoid of revolution, generated by an ellipse rotated around its minor diameter; a shape which he termed an oblate spheroid. [2] [3]

  8. Geodesics on an ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid

    A geodesic on an oblate ellipsoid. ... (the term spheroid is also used) ... where dT is an element of surface area and K is the Gaussian curvature.

  9. Flattening - Wikipedia

    en.wikipedia.org/wiki/Flattening

    A sphere of radius a compressed to an oblate ellipsoid of revolution. Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution ( spheroid ) respectively.