enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mixture distribution - Wikipedia

    en.wikipedia.org/wiki/Mixture_distribution

    In probability and statistics, a mixture distribution is the probability distribution of a random variable that is derived from a collection of other random variables as follows: first, a random variable is selected by chance from the collection according to given probabilities of selection, and then the value of the selected random variable is realized.

  3. Compound probability distribution - Wikipedia

    en.wikipedia.org/wiki/Compound_probability...

    In probability and statistics, a compound probability distribution (also known as a mixture distribution or contagious distribution) is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution, with (some of) the parameters of that distribution themselves being random variables.

  4. Mixture (probability) - Wikipedia

    en.wikipedia.org/wiki/Mixture_(probability)

    In probability theory and statistics, a mixture is a probabilistic combination of two or more probability distributions. [1] The concept arises mostly in two contexts: A mixture defining a new probability distribution from some existing ones, as in a mixture distribution or a compound distribution. Here a major problem often is to derive the ...

  5. Mixture model - Wikipedia

    en.wikipedia.org/wiki/Mixture_model

    A typical finite-dimensional mixture model is a hierarchical model consisting of the following components: . N random variables that are observed, each distributed according to a mixture of K components, with the components belonging to the same parametric family of distributions (e.g., all normal, all Zipfian, etc.) but with different parameters

  6. EM algorithm and GMM model - Wikipedia

    en.wikipedia.org/wiki/EM_Algorithm_And_GMM_Model

    The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.

  7. Category:Systems of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Category:Systems_of...

    This category is collections of probability distribution that have been brought together for a similar usage in Statistics to the Pearson system of distributions, or the Burr system. That is to have distributions that between them cover a range of behaviour that is not covered by any single one, such that a statistical analysis would select a ...

  8. Rayleigh mixture distribution - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_mixture_distribution

    In probability theory and statistics a Rayleigh mixture distribution is a weighted mixture of multiple probability distributions where the weightings are equal to the weightings of a Rayleigh distribution. [1] Since the probability density function for a (standard) Rayleigh distribution is given by [2]

  9. Normal variance-mean mixture - Wikipedia

    en.wikipedia.org/wiki/Normal_variance-mean_mixture

    An important example of normal variance-mean mixtures is the generalised hyperbolic distribution in which the mixing distribution is the generalized inverse Gaussian distribution. The probability density function of a normal variance-mean mixture with mixing probability density g {\displaystyle g} is