enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  3. Duodecimal - Wikipedia

    en.wikipedia.org/wiki/Duodecimal

    In duodecimal, the number twelve is denoted "10", meaning 1 twelve and 0 units; in the decimal system, this number is instead written as "12" meaning 1 ten and 2 units, and the string "10" means ten. In duodecimal, "100" means twelve squared , "1000" means twelve cubed , and "0.1" means a twelfth.

  4. Significant figures - Wikipedia

    en.wikipedia.org/wiki/Significant_figures

    (2 here is assumed not an exact number.) For the first example, the first term has its last significant figure in the thousandths place and the second term has its last significant figure in the ones place. The leftmost or largest digit position among the last significant figures of these terms is the ones place, so the calculated result should ...

  5. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    This technique allows easy multiplication of numbers close and below 100.(90-99) [2] The variables will be the two numbers one multiplies. The product of two variables ranging from 90-99 will result in a 4-digit number. The first step is to find the ones-digit and the tens digit. Subtract both variables from 100 which will result in 2 one-digit ...

  6. Fourth power - Wikipedia

    en.wikipedia.org/wiki/Fourth_power

    Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to n 4 as n tesseracted, hypercubed, zenzizenzic, biquadrate or supercubed instead of “to the power of 4”. The sequence of fourth powers of integers, known as biquadrates or tesseractic numbers, is:

  7. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    If only one root, say r 1, is real, then r 2 and r 3 are complex conjugates, which implies that r 2 – r 3 is a purely imaginary number, and thus that (r 2 – r 3) 2 is real and negative. On the other hand, r 1 – r 2 and r 1 – r 3 are complex conjugates, and their product is real and positive. [ 23 ]

  8. Sixth power - Wikipedia

    en.wikipedia.org/wiki/Sixth_power

    In arithmetic and algebra the sixth power of a number n is the result of multiplying six instances of n together. So: n 6 = n × n × n × n × n × n. Sixth powers can be formed by multiplying a number by its fifth power, multiplying the square of a number by its fourth power, by cubing a square, or by squaring a cube. The sequence of sixth ...

  9. Sum of two cubes - Wikipedia

    en.wikipedia.org/wiki/Sum_of_two_cubes

    A Cabtaxi number is the smallest positive number that can be expressed as a sum of two integer cubes in n ways, allowing the cubes to be negative or zero as well as positive. The smallest cabtaxi number after Cabtaxi(1) = 0, is Cabtaxi(2) = 91, [ 5 ] expressed as: