Search results
Results from the WOW.Com Content Network
The iodine clock reaction is a classical chemical clock demonstration experiment to display chemical kinetics in action; it was discovered by Hans Heinrich Landolt in 1886. [1] The iodine clock reaction exists in several variations, which each involve iodine species ( iodide ion, free iodine, or iodate ion) and redox reagents in the presence of ...
The mechanism of carbonyl oxidation by iodine(III) reagents varies as a function of substrate structure and reaction conditions, but some generalizations are possible. Under basic conditions, the active iodinating species are iodine(III) compounds in which any relatively acidic ligands on iodine (such as acetate) have been replaced by alkoxide. [1]
These iodine compounds are hypervalent because the iodine atom formally contains in its valence shell more than the 8 electrons required for the octet rule. Hypervalent iodine oxyanions are known for oxidation states +1, +3, +5, and +7; organic analogues of these moieties are known for each oxidation state except +7.
This experiment is about much more than just watching Iodine solution turn royal blue from reddish brown. Try this experiment at home with the kids to introduce them to the basic tenet of physics ...
It is a colourless gas that reacts with oxygen to give water and iodine. Although it is useful in iodination reactions in the laboratory, it does not have large-scale industrial uses, unlike the other hydrogen halides. Commercially, it is usually made by reacting iodine with hydrogen sulfide or hydrazine: [4] 2 I 2 + N 2 H 4 4 HI + N 2
Hydrazone iodination is an organic reaction in which a hydrazone is converted into a vinyl iodide by reaction of iodine and a non-nucleophilic base such as DBU. [1] [2] First published by Derek Barton in 1962 the reaction is sometimes referred to as the Barton reaction (although there are many different Barton reactions) or, more descriptively, as the Barton vinyl iodine procedure.
Starch is optionally added as an indicator to show the abrupt increase in iodide ion concentration as a sudden change from amber (free iodine) to dark blue (the "iodine-starch complex", which requires both iodine and iodide.) [7] Recently it has been shown, however, that the starch is not only an indicator for iodine in the reaction. [8]
The sulfur and iodine compounds are recovered and reused, hence the consideration of the process as a cycle. This S–I process is a chemical heat engine. Heat enters the cycle in high-temperature endothermic chemical reactions 2 and 3, and heat exits the cycle in the low-temperature exothermic reaction 1.