Search results
Results from the WOW.Com Content Network
Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous functions).
Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous.In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics – such as integers, graphs, and statements in logic [1] – do not vary smoothly in this way, but have distinct, separated values. [2]
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
To Create His Geometric Artwork, M.C. Escher Had to Learn Math the Hard Way. Fourier Transforms: The Math That Made Color TV Possible. The Game of Trees is a Mad Math Theory That Is Impossible to ...
Kawasaki's theorem (mathematics of paper folding) Kelvin's circulation theorem ; Kempf–Ness theorem (algebraic geometry) Kepler conjecture (discrete geometry) Kharitonov's theorem (control theory) Khinchin's theorem (probability) Killing–Hopf theorem (Riemannian geometry) Kinoshita–Lee–Nauenberg theorem (quantum field theory)
A simple example of an NP-hard problem is the subset sum problem. Informally, if H is NP-hard, then it is at least as difficult to solve as the problems in NP. However, the opposite direction is not true: some problems are undecidable, and therefore even more difficult to solve than all problems in NP, but they are probably not NP-hard (unless ...
The P versus NP problem, which remains open to this day, is also important for discrete mathematics, since its solution would potentially impact a large number of computationally difficult problems. [45] Discrete mathematics includes: [14] Combinatorics, the art of enumerating mathematical objects that satisfy some given constraints.
As of 2006, the most efficient means known to solve the DHP is to solve the discrete logarithm problem (DLP), which is to find x given g and g x. In fact, significant progress (by den Boer, Maurer, Wolf, Boneh and Lipton) has been made towards showing that over many groups the DHP is almost as hard as the DLP. There is no proof to date that ...