enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    To test for divisibility by D, where D ends in 1, 3, 7, or 9, the following method can be used. [12] Find any multiple of D ending in 9. (If D ends respectively in 1, 3, 7, or 9, then multiply by 9, 3, 7, or 1.) Then add 1 and divide by 10, denoting the result as m. Then a number N = 10t + q is divisible by D if and only if mq + t is divisible ...

  3. Trial division - Wikipedia

    en.wikipedia.org/wiki/Trial_division

    Trial division is the most laborious but easiest to understand of the integer factorization algorithms. The essential idea behind trial division tests to see if an integer n, the integer to be factored, can be divided by each number in turn that is less than or equal to the square root of n.

  4. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    Using fast algorithms for modular exponentiation and multiprecision multiplication, the running time of this algorithm is O(k log 2 n log log n) = Õ(k log 2 n), where k is the number of times we test a random a, and n is the value we want to test for primality; see Miller–Rabin primality test for details.

  5. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    The Solovay–Strassen test is an Euler probable prime test (see PSW [3] page 1003). For each individual value of a, the Solovay–Strassen test is weaker than the Miller–Rabin test. For example, if n = 1905 and a = 2, then the Miller-Rabin test shows that n is composite, but the Solovay–Strassen test does not.

  6. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    r N−3 = r N−5 − q N−3 r N−4. Substituting these formulae for r N −2 and r N −3 into the first equation yields g as a linear sum of the remainders r N −4 and r N −5 . The process of substituting remainders by formulae involving their predecessors can be continued until the original numbers a and b are reached:

  7. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    Therefore, to prove that Fermat's equation has no solutions for n > 2, it suffices to prove that it has no solutions for n = 4 and for all odd primes p. For any such odd exponent p, every positive-integer solution of the equation a p + b p = c p corresponds to a general integer solution to the equation a p + b p + c p = 0.

  8. Today’s NYT ‘Strands’ Hints, Spangram and Answers ... - AOL

    www.aol.com/today-nyt-strands-hints-spangram...

    For every 3 non-theme words you find, you earn a hint. Hints show the letters of a theme word. If there is already an active hint on the board, a hint will show that word’s letter order.

  9. Palindromic prime - Wikipedia

    en.wikipedia.org/wiki/Palindromic_prime

    2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, … (sequence A002385 in the OEIS) Except for 11, all palindromic primes have an odd number of digits, because the divisibility test for 11 tells us that every palindromic number with an even number of digits is a multiple of 11. It is not known if there ...