Search results
Results from the WOW.Com Content Network
To test divisibility by any number expressed as the product of prime factors , we can separately test for divisibility by each prime to its appropriate power. For example, testing divisibility by 24 (24 = 8 × 3 = 2 3 × 3) is equivalent to testing divisibility by 8 (2 3 ) and 3 simultaneously, thus we need only show divisibility by 8 and by 3 ...
Trial division is the most laborious but easiest to understand of the integer factorization algorithms. The essential idea behind trial division tests to see if an integer n, the integer to be factored, can be divided by each number in turn that is less than or equal to the square root of n.
This is the sieve's key distinction from using trial division to sequentially test each candidate number for divisibility by each prime. [2] Once all the multiples of each discovered prime have been marked as composites, the remaining unmarked numbers are primes.
The first deterministic primality test significantly faster than the naive methods was the cyclotomy test; its runtime can be proven to be O((log n) c log log log n), where n is the number to test for primality and c is a constant independent of n. Many further improvements were made, but none could be proven to have polynomial running time.
Using fast algorithms for modular exponentiation and multiprecision multiplication, the running time of this algorithm is O(k log 2 n log log n) = Õ(k log 2 n), where k is the number of times we test a random a, and n is the value we want to test for primality; see Miller–Rabin primality test for details.
What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition that the divisors are pairwise coprime (no two divisors share a common factor other than 1).
For example, the integers 4, 5, 6 are (setwise) coprime (because the only positive integer dividing all of them is 1), but they are not pairwise coprime (because gcd(4, 6) = 2). The concept of pairwise coprimality is important as a hypothesis in many results in number theory, such as the Chinese remainder theorem .