Search results
Results from the WOW.Com Content Network
Transfection is the process of deliberately introducing naked or purified nucleic acids into eukaryotic cells. [1] [2] It may also refer to other methods and cell types, although other terms are often preferred: "transformation" is typically used to describe non-viral DNA transfer in bacteria and non-animal eukaryotic cells, including plant cells.
Hydrodynamic Delivery was developed as a way to insert genes without viral infection (transfection). The procedure requires a high-volume DNA solution to be inserted into the veins of the rodent using a high-pressure needle. [2] The volume of the DNA is typically 8-10% equal to 8-10% of the animal's body weight, and is injected within 5-7 seconds.
Magnetofection is a transfection method that uses magnetic fields to concentrate particles containing vectors to target cells in the body. [1] Magnetofection has been adapted to a variety of vectors, including nucleic acids, non-viral transfection systems, and viruses.
Tissue nanotransfection (TNT) is an electroporation-based technique capable of gene and drug cargo delivery or transfection at the nanoscale. Furthermore, TNT is a scaffold-less tissue engineering (TE) technique that can be considered cell-only or tissue inducing depending on cellular or tissue level applications.
In gene therapy a gene that is intended for delivery is packaged into a replication-deficient viral particle to form a viral vector. [29] Viruses used for gene therapy to date include retrovirus, adenovirus, adeno-associated virus and herpes simplex virus. However, there are drawbacks to using viruses to deliver genes into cells.
This technique is usually used in molecular biology and non-viral gene therapy in order to allow uptake of large molecules such as DNA into the cell, in a cell disruption process called transfection or transformation. Sonoporation employs the acoustic cavitation of microbubbles to enhance delivery of these large molecules. [1]
The gene gun apparatus is ready to fire. Helium fills the chamber and pressure builds against the rupture disk. The pressure eventually reaches the point where the rupture disk breaks, and the resulting burst of helium propels the DNA/gold-coated macrocarrier ('Plastic Disk') into the stopping screen.
The PlCh protocol was then used on telomeric chromatin to identify telomeric factors and resulted in finding a number of novel associations. [15] Professor Kingston's advancements within the field of biotechnology extend into developing eukaryotic cell transfection protocols, for he also developed two methods of calcium phosphate transfection ...