enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    Many properties of a natural number n can be seen or directly computed from the prime factorization of n.. The multiplicity of a prime factor p of n is the largest exponent m for which p m divides n.

  3. Multiset - Wikipedia

    en.wikipedia.org/wiki/Multiset

    In the multiset {a, a, b}, the element a has multiplicity 2, and b has multiplicity 1. In the multiset {a, a, a, b, b, b}, a and b both have multiplicity 3. These objects are all different when viewed as multisets, although they are the same set, since they all consist of the same elements.

  4. Persistence of a number - Wikipedia

    en.wikipedia.org/wiki/Persistence_of_a_number

    The additive persistence of 2718 is 2: first we find that 2 + 7 + 1 + 8 = 18, and then that 1 + 8 = 9. The multiplicative persistence of 39 is 3, because it takes three steps to reduce 39 to a single digit: 39 → 27 → 14 → 4. Also, 39 is the smallest number of multiplicative persistence 3.

  5. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    It is also not a multiple of 5 because its last digit is 7. The next odd divisor to be tested is 7. One has 77 = 7 · 11, and thus n = 2 · 3 2 · 7 · 11. This shows that 7 is prime (easy to test directly). Continue with 11, and 7 as a first divisor candidate. As 7 2 > 11, one has finished. Thus 11 is prime, and the prime factorization is ...

  6. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    Any nth degree polynomial has exactly n roots in the complex plane, if counted according to multiplicity. So if f ( x ) is a polynomial with real coefficients which does not have a root at 0 (that is a polynomial with a nonzero constant term) then the minimum number of nonreal roots is equal to

  7. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    [2] [3] The integers k of this form are sometimes referred to as totatives of n. For example, the totatives of n = 9 are the six numbers 1, 2, 4, 5, 7 and 8. They are all relatively prime to 9, but the other three numbers in this range, 3, 6, and 9 are not, since gcd(9, 3) = gcd(9, 6) = 3 and gcd(9, 9) = 9.

  8. Integer partition - Wikipedia

    en.wikipedia.org/wiki/Integer_partition

    8; 7 + 1; 6 + 2; 5 + 3; 5 + 2 + 1; 4 + 3 + 1; This is a general property. For each positive number, the number of partitions with odd parts equals the number of partitions with distinct parts, denoted by q(n). [8] [9] This result was proved by Leonhard Euler in 1748 [10] and later was generalized as Glaisher's theorem.

  9. Resolution of singularities - Wikipedia

    en.wikipedia.org/wiki/Resolution_of_singularities

    An example where it does not is given by the isolated singularity of x 2 + y 3 z + z 3 = 0 at the origin. Blowing it up gives the singularity x 2 + y 2 z + yz 3 = 0. It is not immediately obvious that this new singularity is better, as both singularities have multiplicity 2 and are given by the sum of monomials of degrees 2, 3, and 4.