Search results
Results from the WOW.Com Content Network
For example, for visible light, the refractive index of glass is typically around 1.5, meaning that light in glass travels at c / 1.5 ≈ 200 000 km/s (124 000 mi/s); the refractive index of air for visible light is about 1.0003, so the speed of light in air is about 90 km/s (56 mi/s) slower than c.
speed of light (in vacuum) 299,792,458 meters per second (m/s) speed of sound: meter per second (m/s) specific heat capacity: joule per kilogram per kelvin (J⋅kg −1 ⋅K −1) viscous damping coefficient kilogram per second (kg/s) electric displacement field also called the electric flux density coulomb per square meter (C/m 2)
The variation in speed of light with wavelength is known as dispersion, and is also responsible for the familiar phenomenon in which light is separated into component colours by a prism. Separation occurs when the refractive index inside the prism varies with wavelength, so different wavelengths propagate at different speeds inside the prism ...
is the speed of light (i.e. phase velocity) in a medium with permeability μ, and permittivity ε, and ∇ 2 is the Laplace operator. In a vacuum, v ph = c 0 = 299 792 458 m/s, a fundamental physical constant. [1] The electromagnetic wave equation derives from Maxwell's equations.
Defining equation (physical chemistry) List of electromagnetism equations; List of equations in classical mechanics; List of equations in gravitation; List of equations in nuclear and particle physics; List of equations in quantum mechanics; List of equations in wave theory; List of relativistic equations
The reduced Compton wavelength is a natural representation of mass on the quantum scale and is used in equations that pertain to inertial mass, such as the Klein–Gordon and Schrödinger's equations. [2]: 18–22 Equations that pertain to the wavelengths of photons interacting with mass use the non-reduced Compton wavelength.
The refractive index, , can be seen as the factor by which the speed and the wavelength of the radiation are reduced with respect to their vacuum values: the speed of light in a medium is v = c/n, and similarly the wavelength in that medium is λ = λ 0 /n, where λ 0 is the wavelength of that
This equation is known as the Planck relation. Additionally, using equation f = c/λ, = where E is the photon's energy; λ is the photon's wavelength; c is the speed of light in vacuum; h is the Planck constant; The photon energy at 1 Hz is equal to 6.626 070 15 × 10 −34 J, which is equal to 4.135 667 697 × 10 −15 eV.