enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix factorization (algebra) - Wikipedia

    en.wikipedia.org/wiki/Matrix_factorization_(algebra)

    For a commutative ring and an element , a matrix factorization of is a pair of n-by-n matrices , such that =. This can be encoded more generally as a /-graded ...

  3. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are ...

  4. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    where R 1 is an n×n upper triangular matrix, 0 is an (m − n)×n zero matrix, Q 1 is m×n, Q 2 is m×(m − n), and Q 1 and Q 2 both have orthogonal columns. Golub & Van Loan (1996, §5.2) call Q 1 R 1 the thin QR factorization of A; Trefethen and Bau call this the reduced QR factorization. [1]

  5. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    Matrix rings are non-commutative and have no unique factorization: there are, in general, many ways of writing a matrix as a product of matrices. Thus, the factorization problem consists of finding factors of specified types. For example, the LU decomposition gives a matrix as the product of a lower triangular matrix by an upper triangular matrix.

  6. Matrix factorization of a polynomial - Wikipedia

    en.wikipedia.org/wiki/Matrix_factorization_of_a...

    In mathematics, a matrix factorization of a polynomial is a technique for factoring irreducible polynomials with matrices. David Eisenbud proved that every multivariate real-valued polynomial p without linear terms can be written as AB = pI , where A and B are square matrices and I is the identity matrix . [ 1 ]

  7. Non-negative matrix factorization - Wikipedia

    en.wikipedia.org/wiki/Non-negative_matrix...

    Non-negative matrix factorization (NMF or NNMF), also non-negative matrix approximation [1] [2] is a group of algorithms in multivariate analysis and linear algebra where a matrix V is factorized into (usually) two matrices W and H, with the property that all three matrices have no negative elements. This non-negativity makes the resulting ...

  8. Matrix completion - Wikipedia

    en.wikipedia.org/wiki/Matrix_completion

    Matrix completion of a partially revealed 5 by 5 matrix with rank-1. Left: observed incomplete matrix; Right: matrix completion result. Matrix completion is the task of filling in the missing entries of a partially observed matrix, which is equivalent to performing data imputation in statistics. A wide range of datasets are naturally organized ...

  9. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.