enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. ELKI - Wikipedia

    en.wikipedia.org/wiki/ELKI

    ELKI is a free tool for analyzing data, mainly focusing on finding patterns and unusual data points without needing labels. It's written in Java and aims to be fast and able to handle big datasets by using special structures. It's made for researchers and students to add their own methods and compare different algorithms easily. [2]

  3. Local outlier factor - Wikipedia

    en.wikipedia.org/wiki/Local_outlier_factor

    The resulting values are quotient-values and hard to interpret. A value of 1 or even less indicates a clear inlier, but there is no clear rule for when a point is an outlier. In one data set, a value of 1.1 may already be an outlier, in another dataset and parameterization (with strong local fluctuations) a value of 2 could still be an inlier.

  4. Peirce's criterion - Wikipedia

    en.wikipedia.org/wiki/Peirce's_criterion

    In data sets containing real-numbered measurements, the suspected outliers are the measured values that appear to lie outside the cluster of most of the other data values. The outliers would greatly change the estimate of location if the arithmetic average were to be used as a summary statistic of location.

  5. Chauvenet's criterion - Wikipedia

    en.wikipedia.org/wiki/Chauvenet's_criterion

    The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...

  6. OPTICS algorithm - Wikipedia

    en.wikipedia.org/wiki/OPTICS_algorithm

    Note that the value of might heavily influence the cost of the algorithm, since a value too large might raise the cost of a neighborhood query to linear complexity. In particular, choosing ε > max x , y d ( x , y ) {\displaystyle \varepsilon >\max _{x,y}d(x,y)} (larger than the maximum distance in the data set) is possible, but leads to ...

  7. Data structure - Wikipedia

    en.wikipedia.org/wiki/Data_structure

    A data structure known as a hash table.. In computer science, a data structure is a data organization and storage format that is usually chosen for efficient access to data. [1] [2] [3] More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data, [4] i.e., it is an algebraic structure about data.

  8. List of data structures - Wikipedia

    en.wikipedia.org/wiki/List_of_data_structures

    This is a list of well-known data structures. For a wider list of terms, see list of terms relating to algorithms and data structures. For a comparison of running times for a subset of this list see comparison of data structures.

  9. Hamming distance - Wikipedia

    en.wikipedia.org/wiki/Hamming_distance

    For a fixed length n, the Hamming distance is a metric on the set of the words of length n (also known as a Hamming space), as it fulfills the conditions of non-negativity, symmetry, the Hamming distance of two words is 0 if and only if the two words are identical, and it satisfies the triangle inequality as well: [2] Indeed, if we fix three words a, b and c, then whenever there is a ...

  1. Related searches examples of outlier values in data structure and program in java project

    local outlier factor explainedlocal outlier factor formula
    local outlier factor algorithm