enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stressstrain_curve

    In engineering and materials science, a stressstrain curve for a material gives the relationship between stress and strain. It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined (see tensile testing). These curves reveal many of the properties of a ...

  3. Yield (engineering) - Wikipedia

    en.wikipedia.org/wiki/Yield_(engineering)

    Proportionality limit Up to this amount of stress, stress is proportional to strain (Hooke's law), so the stress-strain graph is a straight line, and the gradient will be equal to the elastic modulus of the material. Elastic limit (yield strength) Beyond the elastic limit, permanent deformation will occur.

  4. Ultimate tensile strength - Wikipedia

    en.wikipedia.org/wiki/Ultimate_tensile_strength

    The reversal point is the maximum stress on the engineering stressstrain curve, and the engineering stress coordinate of this point is the ultimate tensile strength, given by point 1. Ultimate tensile strength is not used in the design of ductile static members because design practices dictate the use of the yield stress. It is, however ...

  5. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    In many materials, the relation between applied stress is directly proportional to the resulting strain (up to a certain limit), and a graph representing those two quantities is a straight line. The slope of this line is known as Young's modulus , or the "modulus of elasticity".

  6. von Mises yield criterion - Wikipedia

    en.wikipedia.org/wiki/Von_Mises_yield_criterion

    t. e. In continuum mechanics, the maximum distortion energy criterion (also von Mises yield criterion[1]) states that yielding of a ductile material begins when the second invariant of deviatoric stress reaches a critical value. [2] It is a part of plasticity theory that mostly applies to ductile materials, such as some metals.

  7. Young's modulus - Wikipedia

    en.wikipedia.org/wiki/Young's_modulus

    Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the resulting axial strain (displacement or deformation) in the linear elastic region of the material. Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler.

  8. Ramberg–Osgood relationship - Wikipedia

    en.wikipedia.org/wiki/Ramberg–Osgood_relationship

    Ramberg–Osgood relationship. The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain —that is, the stressstrain curve —in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening), showing a smooth elastic-plastic ...

  9. Elastic modulus - Wikipedia

    en.wikipedia.org/wiki/Elastic_modulus

    Stress-strain curve: Plot the calculated stress versus the applied strain to create a stress-strain curve. The slope of the initial, linear portion of this curve gives Young's modulus. Mathematically, Young's modulus E is calculated using the formula E=σ/ϵ, where σ is the stress and ϵ is the strain. Shear modulus (G)