Search results
Results from the WOW.Com Content Network
Brouwer has confirmed by computation that the conjecture is valid for all graphs with at most 10 vertices. [1] It is also known that the conjecture is valid for any number of vertices if t = 1, 2, n − 1, and n. For certain types of graphs, Brouwer's conjecture is known to be valid for all t and for any number of vertices
The Brouwer–Haemers graph is the first in an infinite family of Ramanujan graphs defined as generalized Paley graphs over fields of characteristic three. [2] With the 3 × 3 {\displaystyle 3\times 3} Rook's graph and the Games graph , it is one of only three possible strongly regular graphs whose parameters have the form ( ( n 2 + 3 n − 1 ...
The 1980 monograph Spectra of Graphs [16] by Cvetković, Doob, and Sachs summarised nearly all research to date in the area. In 1988 it was updated by the survey Recent Results in the Theory of Graph Spectra. [17] The 3rd edition of Spectra of Graphs (1995) contains a summary of the further recent contributions to the subject. [15]
Andries Brouwer and Hendrik van Maldeghem (see #References) use an alternate but fully equivalent definition of a strongly regular graph based on spectral graph theory: a strongly regular graph is a finite regular graph that has exactly three eigenvalues, only one of which is equal to the degree k, of multiplicity 1.
Not being able to finish all your groceries before they expire isn't a good feeling. But how do you make sure you're safely freezing milk?
The new CFPB regulation would require large banks and credit unions to either charge just $5 for overdrafts or, alternatively, pick an amount no higher than the cost of offering overdraft protection.
The booming U.S. stock market will help keep the dollar expensive as global investors pour money into America, a foreign exchange strategist said. But the politics of any trade deals that the ...
The spectrum of T is the set of all complex numbers ζ such that R ζ fails to exist or is unbounded. Often the spectrum of T is denoted by σ(T). The function R ζ for all ζ in ρ(T) (that is, wherever R ζ exists as a bounded operator) is called the resolvent of T. The spectrum of T is therefore the complement of the resolvent set of T in ...