Search results
Results from the WOW.Com Content Network
Maltose syrup. Maltose is a malt component, a substance obtained when the grain is softened in water and germinates. It is also present in highly variable quantities in partially hydrolyzed starch products like maltodextrin, corn syrup and acid-thinned starch. [10] Outside of plants, maltose is also (likely) found in sugarbag. [11]
The starch is first converted, by means of simple enzymatic hydrolysis, into high maltose syrup with di-, tri and oligosaccharides (2, 3 or more glucose units) having α(1,4)-glycosidic linkages which are readily digestible in the human intestine. These α(1,4)-glycosidic linkages are further converted into digestion-resistant α(1,6 ...
A glycosidic bond or glycosidic linkage is a type of ether bond that joins a carbohydrate (sugar) molecule to another group, which may or may not be another carbohydrate. Formation of ethyl glucoside: Glucose and ethanol combine to form ethyl glucoside and water .
Working from the non-reducing end, β-amylase catalyzes the hydrolysis of the second α-1,4 glycosidic bond, cleaving off two glucose units at a time. During the ripening of fruit, β-amylase breaks starch into maltose, resulting in the sweet flavor of ripe fruit. β-amylase is present in an inactive form prior to seed germination.
For example, milk sugar (lactose) is a disaccharide made by condensation of one molecule of each of the monosaccharides glucose and galactose, whereas the disaccharide sucrose in sugar cane and sugar beet, is a condensation product of glucose and fructose. Maltose, another common disaccharide, is condensed from two glucose molecules. [7]
The formation of a glycosidic linkage results in the formation of a new stereogenic centre and therefore a mixture of products may be expected to result. The linkage formed may either be axial or equatorial (α or β with respect to glucose). To better understand this, the mechanism of a glycosylation reaction must be considered.
Reducing disaccharides like lactose and maltose have only one of their two anomeric carbons involved in the glycosidic bond, while the other is free and can convert to an open-chain form with an aldehyde group. The aldehyde functional group allows the sugar to act as a reducing agent, for example, in the Tollens' test or Benedict's test.
When the glycosidic linkages and configurations of the monosaccharides are known, they may be included as a prefix to the name, with the notation for glycosidic linkages preceding the symbols designating the configuration. [3] The following example will help illustrate this concept: (1→4)-β-D-Glucan