enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fermat number - Wikipedia

    en.wikipedia.org/wiki/Fermat_number

    The Fermat numbers satisfy the following recurrence relations: = + = + for n ≥ 1, = + = for n ≥ 2.Each of these relations can be proved by mathematical induction.From the second equation, we can deduce Goldbach's theorem (named after Christian Goldbach): no two Fermat numbers share a common integer factor greater than 1.

  3. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation a n + b n = c n for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions. [1]

  4. Fermat quotient - Wikipedia

    en.wikipedia.org/wiki/Fermat_quotient

    The quotient is named after Pierre de Fermat. If the base a is coprime to the exponent p then Fermat's little theorem says that q p (a) will be an integer. If the base a is also a generator of the multiplicative group of integers modulo p, then q p (a) will be a cyclic number, and p will be a full reptend prime.

  5. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    The multiplication of two odd numbers is always odd, but the multiplication of an even number with any number is always even. An odd number raised to a power is always odd and an even number raised to power is always even, so for example x n has the same parity as x. Consider any primitive solution (x, y, z) to the equation x n + y n = z n.

  6. Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_little_theorem

    In number theory, Fermat's little theorem states that if p is a prime number, then for any integer a, the number a p − a is an integer multiple of p. In the notation of modular arithmetic , this is expressed as a p ≡ a ( mod p ) . {\displaystyle a^{p}\equiv a{\pmod {p}}.}

  7. Fermat's theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem

    The works of the 17th-century mathematician Pierre de Fermat engendered many theorems. Fermat's theorem may refer to one of the following theorems: Fermat's Last Theorem, about integer solutions to a n + b n = c n; Fermat's little theorem, a property of prime numbers; Fermat's theorem on sums of two squares, about primes expressible as a sum of ...

  8. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    For these numbers, repeated application of the Fermat primality test performs the same as a simple random search for factors. While Carmichael numbers are substantially rarer than prime numbers (Erdös' upper bound for the number of Carmichael numbers [ 3 ] is lower than the prime number function n/log(n) ) there are enough of them that Fermat ...

  9. Fermat pseudoprime - Wikipedia

    en.wikipedia.org/wiki/Fermat_pseudoprime

    When p is a prime, p 2 is a Fermat pseudoprime to base b if and only if p is a Wieferich prime to base b. For example, 1093 2 = 1194649 is a Fermat pseudoprime to base 2, and 11 2 = 121 is a Fermat pseudoprime to base 3. The number of the values of b for n are (For n prime, the number of the values of b must be n − 1, since all b satisfy the ...